Skip to main content Accessibility help
×
Home

Organization of the dorsal lateral geniculate nucleus in the mouse

  • DANIEL KERSCHENSTEINER (a1) (a2) (a3) (a4) and WILLIAM GUIDO (a5)

Abstract

The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Organization of the dorsal lateral geniculate nucleus in the mouse
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Organization of the dorsal lateral geniculate nucleus in the mouse
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Organization of the dorsal lateral geniculate nucleus in the mouse
      Available formats
      ×

Copyright

Corresponding author

*Address correspondence to: Daniel Kerschensteiner, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110. E-mail: kerschensteinerd@wustl.edu; William Guido, Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St, Louisville, KY 40292. E-mail: william.guido@louisville.edu

References

Hide All
Ackman, J.B., Burbridge, T.J. & Crair, M.C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219225.
Akerman, C.J., Grubb, M.S. & Thompson, I.D. (2004). Spatial and temporal properties of visual responses in the thalamus of the developing ferret. Journal of Neuroscience 24, 170182.
Allen, A.E., Storchi, R., Martial, F.P., Petersen, R.S., Montemurro, M.A., Brown, T.M. & Lucas, R.J. (2014). Melanopsin-driven light adaptation in mouse vision. Current Biology 24, 24812490.
Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L. & Reid, R.C. (2011). Functional specialization of mouse higher visual cortical areas. Neuron 72, 10251039.
Arcelli, P., Frassoni, C., Regondi, M.C., De Biasi, S. & Spreafico, R. (1997). GABAergic neurons in mammalian thalamus: A marker of thalamic complexity? Brain Research Bulletin 42, 2737.
Badea, T.C. & Nathans, J. (2004). Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. Journal of Comparative Neurology 480, 331351.
Baden, T., Berens, P., Franke, K., Roman Roson, M., Bethge, M. & Euler, T. (2016). The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345350.
Berson, D.M., Dunn, F.A. & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 10701073.
Bickford, M.E., Slusarczyk, A., Dilger, E.K., Krahe, T.E., Kucuk, C. & Guido, W. (2010). Synaptic development of the mouse dorsal lateral geniculate nucleus. Journal of Comparative Neurology 518, 622635.
Bickford, M.E., Zhou, N., Krahe, T.E., Govindaiah, G. & Guido, W. (2015). Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. Journal of Neuroscience 35, 1052310534.
Bleckert, A., Schwartz, G.W., Turner, M.H., Rieke, F. & Wong, R.O. (2014). Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Current Biology 24, 310315.
Borst, A. & Euler, T. (2011). Seeing things in motion: Models, circuits, and mechanisms. Neuron 71, 974994.
Brown, T.M., Gias, C., Hatori, M., Keding, S.R., Semo, M., Coffey, P.J., Gigg, J., Piggins, H.D., Panda, S. & Lucas, R.J. (2010). Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biology 8, e1000558.
Burbridge, T.J., Xu, H.P., Ackman, J.B., Ge, X., Zhang, Y., Ye, M.J., Zhou, Z.J., Xu, J., Contractor, A. & Crair, M.C. (2014). Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 84, 10491064.
Cang, J. & Feldheim, D.A. (2013). Developmental mechanisms of topographic map formation and alignment. Annual Review of Neuroscience 36, 5177.
Cang, J., Niell, C.M., Liu, X., Pfeiffenberger, C., Feldheim, D.A. & Stryker, M.P. (2008). Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity. Neuron 57, 511523.
Chapman, B. (2000). Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287, 24792482.
Chen, C., Bickford, M.E. & Hirsch, J.A. (2016). Untangling the web between eye and brain. Cell 165, 2021.
Chen, C. & Regehr, W.G. (2000). Developmental remodeling of the retinogeniculate synapse. Neuron 28, 955966.
Coleman, J.E., Law, K. & Bear, M.F. (2009). Anatomical origins of ocular dominance in mouse primary visual cortex. Neuroscience 161, 561571.
Coombs, J., van der List, D., Wang, G.Y. & Chalupa, L.M. (2006). Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123136.
Cruz-Martin, A., El-Danaf, R.N., Osakada, F., Sriram, B., Dhande, O.S., Nguyen, P.L., Callaway, E.M., Ghosh, A. & Huberman, A.D. (2014). A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358361.
Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. (2003). Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 1527.
de Monasterio, F.M. (1978). Properties of ganglion cells with atypical receptive-field organization in retina of macaques. Journal of Neurophysiology 41, 14351449.
Demas, J., Sagdullaev, B.T., Green, E., Jaubert-Miazza, L., McCall, M.A., Gregg, R.G., Wong, R.O. & Guido, W. (2006). Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron 50, 247259.
Demeulemeester, H., Arckens, L., Vandesande, F., Orban, G.A., Heizmann, C.W. & Pochet, R. (1991). Calcium binding proteins as molecular markers for cat geniculate neurons. Experimental Brain Research 83, 513520.
Denman, D.J. & Contreras, D. (2016). On parallel streams through the mouse dorsal lateral geniculate nucleus. Frontiers in Neural Circuits 10, 20.
Dhande, O.S., Bhatt, S., Anishchenko, A., Elstrott, J., Iwasato, T., Swindell, E.C., Xu, H.P., Jamrich, M., Itohara, S., Feller, M.B. & Crair, M.C. (2012). Role of adenylate cyclase 1 in retinofugal map development. Journal of Comparative Neurology 520, 15621583.
Dhande, O.S., Estevez, M.E., Quattrochi, L.E., El-Danaf, R.N., Nguyen, P.L., Berson, D.M. & Huberman, A.D. (2013). Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. Journal of Neuroscience 33, 1779717813.
Dhande, O.S., Hua, E.W., Guh, E., Yeh, J., Bhatt, S., Zhang, Y., Ruthazer, E.S., Feller, M.B. & Crair, M.C. (2011). Development of single retinofugal axon arbors in normal and beta2 knock-out mice. Journal of Neuroscience 31, 33843399.
Dhande, O.S. & Huberman, A.D. (2014). Retinal ganglion cell maps in the brain: Implications for visual processing. Current Opinion in Neurobiology 24, 133142.
Dhande, O.S., Stafford, B.K., Lim, J-H.A. & Huberman, A.D. (2015). Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annual Review of Vision Science 1, 291328.
Duan, X., Krishnaswamy, A., De la Huerta, I. & Sanes, J.R. (2014). Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 158, 793807.
Durand, S., Iyer, R., Mizuseki, K., de Vries, S., Mihalas, S. & Reid, R.C. (2016). A comparison of visual response properties in the lateral geniculate nucleus and primary visual cortex of awake and anesthetized mice. Journal of Neuroscience 36, 1214412156.
Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M. & Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: Cellular diversity and role in pattern vision. Neuron 67, 4960.
El-Danaf, R.N., Krahe, T.E., Dilger, E.K., Bickford, M.E., Fox, M.A. & Guido, W. (2015). Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Development 10, 19.
Ellis, E.M., Gauvain, G., Sivyer, B. & Murphy, G.J. (2016). Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. Journal of Neurophysiology 116, 602610.
Estevez, M.E., Fogerson, P.M., Ilardi, M.C., Borghuis, B.G., Chan, E., Weng, S., Auferkorte, O.N., Demb, J.B. & Berson, D.M. (2012). Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. Journal of Neuroscience 32, 1360813620.
Farrow, K., Teixeira, M., Szikra, T., Viney, T.J., Balint, K., Yonehara, K. & Roska, B. (2013). Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 78, 325338.
Field, G.D. & Chichilnisky, E.J. (2007). Information processing in the primate retina: Circuitry and coding. Annual Review of Neuroscience 30, 130.
Friedlander, M.J., Lin, C.S., Stanford, L.R. & Sherman, S.M. (1981). Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. Journal of Neurophysiology 46, 80129.
Gauvain, G. & Murphy, G.J. (2015). Projection-specific characteristics of retinal input to the brain. Journal of Neuroscience 35, 65756583.
Godement, P., Salaun, J. & Imbert, M. (1984). Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. Journal of Comparative Neurology 230, 552575.
Grieve, K.L. (2005). Binocular visual responses in cells of the rat dLGN. The Journal of Physiology 566, 119124.
Grubb, M.S., Rossi, F.M., Changeux, J.P. & Thompson, I.D. (2003). Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40, 11611172.
Grubb, M.S. & Thompson, I.D. (2003). Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. Journal of Neurophysiology 90, 35943607.
Grubb, M.S. & Thompson, I.D. (2004). Biochemical and anatomical subdivision of the dorsal lateral geniculate nucleus in normal mice and in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. Vision Research 44, 33653376.
Guido, W. (2008). Refinement of the retinogeniculate pathway. The Journal of Physiology 586, 43574362.
Guido, W., Tumosa, N. & Spear, P.D. (1989). Binocular interactions in the cat’s dorsal lateral geniculate nucleus. I. Spatial-frequency analysis of responses of X, Y, and W cells to nondominant-eye stimulation. Journal of Neurophysiology 62, 526543.
Hammer, S., Monavarfeshani, A., Lemon, T., Su, J. & Fox, M.A. (2015). Multiple retinal axons converge onto relay cells in the adult mouse thalamus. Cell Reports 12, 15751583.
Hamos, J.E., Van Horn, S.C., Raczkowski, D. & Sherman, S.M. (1987). Synaptic circuits involving an individual retinogeniculate axon in the cat. Journal of Comparative Neurology 259, 165192.
Harting, J.K., Huerta, M.F., Hashikawa, T. & van Lieshout, D.P. (1991). Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species. Journal of Comparative Neurology 304, 275306.
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K.W. & Berson, D.M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. Journal of Comparative Neurology 497, 326349.
Hattar, S., Liao, H.W., Takao, M., Berson, D.M. & Yau, K.W. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 10651070.
Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S. & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168174.
Hong, Y.K. & Chen, C. (2011). Wiring and rewiring of the retinogeniculate synapse. Current Opinion in Neurobiology 21, 228237.
Hong, Y.K., Park, S., Litvina, E.Y., Morales, J., Sanes, J.R. & Chen, C. (2014). Refinement of the retinogeniculate synapse by bouton clustering. Neuron 84, 332339.
Howarth, M., Walmsley, L. & Brown, T.M. (2014). Binocular integration in the mouse lateral geniculate nuclei. Current Biology 24, 12411247.
Hubel, D.H. & Wiesel, T.N. (1961). Integrative action in the cat’s lateral geniculate body. The Journal of Physiology 155, 385398.
Huberman, A.D., Manu, M., Koch, S.M., Susman, M.W., Lutz, A.B., Ullian, E.M., Baccus, S.A. & Barres, B.A. (2008). Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59, 425438.
Huberman, A.D., Murray, K.D., Warland, D.K., Feldheim, D.A. & Chapman, B. (2005). Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nature Neuroscience 8, 10131021.
Huberman, A.D., Wei, W., Elstrott, J., Stafford, B.K., Feller, M.B. & Barres, B.A. (2009). Genetic identification of an ON–OFF direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327334.
Ivanova, E., Lee, P. & Pan, Z.H. (2013). Characterization of multiple bistratified retinal ganglion cells in a purkinje cell protein 2-Cre transgenic mouse line. Journal of Comparative Neurology 521, 21652180.
Jacoby, J., Zhu, Y., DeVries, S.H. & Schwartz, G.W. (2015). An amacrine cell circuit for signaling steady illumination in the retina. Cell Reports 13, 26632670.
Jaubert-Miazza, L., Green, E., Lo, F.S., Bui, K., Mills, J. & Guido, W. (2005). Structural and functional composition of the developing retinogeniculate pathway in the mouse. Visual Neuroscience 22, 661676.
Joesch, M. & Meister, M. (2016). A neuronal circuit for colour vision based on rod-cone opponency. Nature 532, 236239.
Kay, J.N., De la Huerta, I., Kim, I.J., Zhang, Y., Yamagata, M., Chu, M.W., Meister, M. & Sanes, J.R. (2011). Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. Journal of Neuroscience 31, 77537762.
Kim, I.J., Zhang, Y., Meister, M. & Sanes, J.R. (2010). Laminar restriction of retinal ganglion cell dendrites and axons: Subtype-specific developmental patterns revealed with transgenic markers. Journal of Neuroscience 30, 14521462.
Kim, I.J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J.R. (2008). Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478482.
Koch, S.M., Dela Cruz, C.G., Hnasko, T.S., Edwards, R.H., Huberman, A.D. & Ullian, E.M. (2011). Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. Neuron 71, 235242.
Krahe, T.E., El-Danaf, R.N., Dilger, E.K., Henderson, S.C. & Guido, W. (2011). Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. Journal of Neuroscience 31, 1743717448.
Lee, B.B., Virsu, V. & Creutzfeldt, O.D. (1983). Linear signal transmission from prepotentials to cells in the macaque lateral geniculate nucleus. Experimental Brain Research 52, 5056.
Lee, S., Zhang, Y., Chen, M. & Zhou, Z.J. (2016). Segregated glycine–glutamate Co-transmission from vGluT3 amacrine cells to contrast-suppressed and contrast-enhanced retinal circuits. Neuron 90, 2734.
Leist, M., Datunashvilli, M., Kanyshkova, T., Zobeiri, M., Aissaoui, A., Cerina, M., Romanelli, M.N., Pape, H.C., & Budde, T. (2016). Two types of interneurons in the mouse lateral geniculate nucleus are characterized by different h-current density. Scientific Reports 6, 24904.
Levick, W.R. (1967). Receptive fields and trigger features of ganglion cells in the visual streak of the rabbits retina. The Journal of Physiology 188, 285307.
Levick, W.R., Cleland, B.G. & Dubin, M.W. (1972). Lateral geniculate neurons of cat: Retinal inputs and physiology. Investigative Ophthalmology 11, 302311.
Marrocco, R.T. & McClurkin, J.W. (1979). Binocular interaction in the lateral geniculate nucleus of the monkey. Brain Research 168, 633637.
Marshel, J.H., Garrett, M.E., Nauhaus, I. & Callaway, E.M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron 72, 10401054.
Marshel, J.H., Kaye, A.P., Nauhaus, I. & Callaway, E.M. (2012). Anterior–posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76, 713720.
Martersteck, E.M., Hirokawa, K.E., Evarts, M., Bernard, A., Duan, X., Li, Y., Ng, L., Oh, S.W., Ouellette, B., Royall, J.J., Stoecklin, M., Wang, Q., Zeng, H., Sanes, J.R. & Harris, J.A. (2017). Diverse central projection patterns of retinal ganglion cells. Cell Reports 18, 20582072.
Martin, P.R. (1986). The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat. Experimental Brain Research 62, 7788.
McLaughlin, T. & O’Leary, D.D. (2005). Molecular gradients and development of retinotopic maps. Annual Review of Neuroscience 28, 327355.
Meister, M., Wong, R.O., Baylor, D.A. & Shatz, C.J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939943.
Morgan, J.L., Berger, D.R., Wetzel, A.W. & Lichtman, J.W. (2016). The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165, 192206.
Muir-Robinson, G., Hwang, B.J. & Feller, M.B. (2002). Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. Journal of Neuroscience 22, 52595264.
Murphy, G.J. & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511524.
Niell, C.M. (2013). Vision: More than expected in the early visual system. Current Biology 23, R681684.
Niell, C.M. & Stryker, M.P. (2010). Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472479.
Osterhout, J.A., El-Danaf, R.N., Nguyen, P.L. & Huberman, A.D. (2014). Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Reports 8, 10061017.
Osterhout, J.A., Stafford, B.K., Nguyen, P.L., Yoshihara, Y. & Huberman, A.D. (2015). Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. Neuron 86, 985999.
Pang, J.J., Gao, F. & Wu, S.M. (2003). Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF alpha ganglion cells in the mouse retina. Journal of Neuroscience 23, 60636073.
Park, S.J., Borghuis, B.G., Rahmani, P., Zeng, Q., Kim, I.J. & Demb, J.B. (2015). Function and circuitry of VIP+ interneurons in the mouse retina. Journal of Neuroscience 35, 1068510700.
Parnavelas, J.G., Mounty, E.J., Bradford, R. & Lieberman, A.R. (1977). The postnatal development of neurons in the dorsal lateral geniculate nucleus of the rat: A Golgi study. Journal of Comparative Neurology 171, 481499.
Petros, T.J., Rebsam, A. & Mason, C.A. (2008). Retinal axon growth at the optic chiasm: To cross or not to cross. Annual Review of Neuroscience 31, 295315.
Pfeiffenberger, C., Cutforth, T., Woods, G., Yamada, J., Renteria, R.C., Copenhagen, D.R., Flanagan, J.G. & Feldheim, D.A. (2005). Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nature Neuroscience 8, 10221027.
Pfeiffenberger, C., Yamada, J. & Feldheim, D.A. (2006). Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. Journal of Neuroscience 26, 1287312884.
Pinault, D. (2004). The thalamic reticular nucleus: Structure, function and concept. Brain Research Reviews 46, 131.
Piscopo, D.M., El-Danaf, R.N., Huberman, A.D. & Niell, C.M. (2013). Diverse visual features encoded in mouse lateral geniculate nucleus. Journal of Neuroscience 33, 46424656.
Prigge, C.L., Yeh, P.T., Liou, N.F., Lee, C.C., You, S.F., Liu, L.L., McNeill, D.S., Chew, K.S., Hattar, S., Chen, S.K. & Zhang, D.Q. (2016). M1 ipRGCs influence visual function through retrograde signaling in the retina. Journal of Neuroscience 36, 71847197.
Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F. & Rollag, M.D. (2000). A novel human opsin in the inner retina. Journal of Neuroscience 20, 600605.
Rafols, J.A. & Valverde, F. (1973). The structure of the dorsal lateral geniculate nucleus in the mouse. A Golgi and electron microscopic study. Journal of Comparative Neurology 150, 303332.
Reese, B.E. (1988). ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: The functional organization of this thalamic region in the rat. Brain Research 472, 119137.
Reese, B.E. & Jeffery, G. (1983). Crossed and uncrossed visual topography in dorsal lateral geniculate nucleus of the pigmented rat. Journal of Neurophysiology 49, 877885.
Reifler, A.N., Chervenak, A.P., Dolikian, M.E., Benenati, B.A., Li, B.Y., Wachter, R.D., Lynch, A.M., Demertzis, Z.D., Meyers, B.S., Abufarha, F.S., Jaeckel, E.R., Flannery, M.P. & Wong, K.Y. (2015). All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Current Biology 25, 27632773.
Rivlin-Etzion, M., Zhou, K., Wei, W., Elstrott, J., Nguyen, P.L., Barres, B.A., Huberman, A.D. & Feller, M.B. (2011). Transgenic mice reveal unexpected diversity of on–off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. Journal of Neuroscience 31, 87608769.
Rodieck, R.W. (1967). Receptive fields in the cat retina: A new type. Science 157, 9092.
Rompani, S.B., Mullner, F.E., Wanner, A., Zhang, C., Roth, C.N., Yonehara, K. & Roska, B. (2017). Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 93, 767776.
Roth, M.M., Helmchen, F. & Kampa, B.M. (2012). Distinct functional properties of primary and posteromedial visual area of mouse neocortex. Journal of Neuroscience 32, 97169726.
Rousso, D.L., Qiao, M., Kagan, R.D., Yamagata, M., Palmiter, R.D. & Sanes, J.R. (2016). Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Reports 15, 19301944.
Sanes, J.R. & Masland, R.H. (2015). The types of retinal ganglion cells: Current status and implications for neuronal classification. Annual Review of Neuroscience 38, 221246.
Schmidt, T.M., Alam, N.M., Chen, S., Kofuji, P., Li, W., Prusky, G.T. & Hattar, S. (2014). A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82, 781788.
Schmidt, T.M., Chen, S.K. & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends in Neurosciences 34, 572580.
Schmidt, T.M. & Kofuji, P. (2009). Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. Journal of Neuroscience 29, 476482.
Scholl, B., Tan, A.Y., Corey, J. & Priebe, N.J. (2013). Emergence of orientation selectivity in the mammalian visual pathway. Journal of Neuroscience 33, 1061610624.
Seabrook, T.A., Krahe, T.E., Govindaiah, G. & Guido, W. (2013). Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Development 8, 24.
Sherman, S.M. (2004). Interneurons and triadic circuitry of the thalamus. Trends in Neurosciences 27, 670675.
Sherman, S.M. & Guillery, R.W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 357, 16951708.
Siegert, S., Scherf, B.G., Del Punta, K., Didkovsky, N., Heintz, N. & Roska, B. (2009). Genetic address book for retinal cell types. Nature Neuroscience 12, 11971204.
Simpson, J.I. (1984). The accessory optic system. Annual Review of Neuroscience 7, 1341.
Sivyer, B., Taylor, W.R. & Vaney, D.I. (2010). Uniformity detector retinal ganglion cells fire complex spikes and receive only light-evoked inhibition. Proceedings of the National Academy of Sciences of the United States of America 107, 56285633.
Soto, F., Ma, X., Cecil, J.L., Vo, B.Q., Culican, S.M. & Kerschensteiner, D. (2012). Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina. Journal of Neuroscience 32, 54265439.
Stanford, L.R., Friedlander, M.J. & Sherman, S.M. (1981). Morphology of physiologically identified W-cells in the C laminae of the cat’s lateral geniculate nucleus. Journal of Neuroscience 1, 578584.
Stanford, L.R., Friedlander, M.J. & Sherman, S.M. (1983). Morphological and physiological properties of geniculate W-cells of the cat: A comparison with X- and Y-cells. Journal of Neurophysiology 50, 582608.
Stellwagen, D. & Shatz, C.J. (2002). An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357367.
Sumbul, U., Song, S., McCulloch, K., Becker, M., Lin, B., Sanes, J.R., Masland, R.H. & Seung, H.S. (2014). A genetic and computational approach to structurally classify neuronal types. Nature Communications 5, 3512.
Sun, L.O., Brady, C.M., Cahill, H., Al-Khindi, T., Sakuta, H., Dhande, O.S., Noda, M., Huberman, A.D., Nathans, J. & Kolodkin, A.L. (2015). Functional assembly of accessory optic system circuitry critical for compensatory eye movements. Neuron 86, 971984.
Sun, W., Li, N. & He, S. (2002). Large-scale morphological survey of mouse retinal ganglion cells. Journal of Comparative Neurology 451, 115126.
Suresh, V., Ciftcioglu, U.M., Wang, X., Lala, B.M., Ding, K.R., Smith, W.A., Sommer, F.T. & Hirsch, J.A. (2016). Synaptic contributions to receptive field structure and response properties in the rodent lateral geniculate nucleus of the thalamus. Journal of Neuroscience 36, 1094910963.
Tang, J., Ardila Jimenez, S.C., Chakraborty, S. & Schultz, S.R. (2016). Visual receptive field properties of neurons in the mouse lateral geniculate nucleus. PLoS One 11, e0146017.
Tavazoie, S.F. & Reid, R.C. (2000). Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nature Neuroscience 3, 608616.
Tien, N.W., Kim, T. & Kerschensteiner, D. (2016). Target-specific glycinergic transmission from VGluT3-expressing amacrine cells shapes suppressive contrast responses in the retina. Cell Reports 15, 13691375.
Tien, N.W., Pearson, J.T., Heller, C.R., Demas, J. & Kerschensteiner, D. (2015). Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli. Journal of Neuroscience 35, 1081510820.
Tu, D.C., Zhang, D., Demas, J., Slutsky, E.B., Provencio, I., Holy, T.E. & Van Gelder, R.N. (2005). Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48, 987999.
Usrey, W.M. & Alitto, H.J. (2015). Visual functions of the thalamus. Annual Review of Vision Science 1, 351371.
Wang, Q., Gao, E. & Burkhalter, A. (2011). Gateways of ventral and dorsal streams in mouse visual cortex. Journal of Neuroscience 31, 19051918.
Wang, Q., Sporns, O. & Burkhalter, A. (2012). Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. Journal of Neuroscience 32, 43864399.
Wong, K.Y., Dunn, F.A., Graham, D.M. & Berson, D.M. (2007). Synaptic influences on rat ganglion-cell photoreceptors. The Journal of Physiology 582, 279296.
Xu, H.P., Burbridge, T.J., Chen, M.G., Ge, X., Zhang, Y., Zhou, Z.J. & Crair, M.C. (2015). Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Developmental Neurobiology 75, 621640.
Yonehara, K., Ishikane, H., Sakuta, H., Shintani, T., Nakamura-Yonehara, K., Kamiji, N.L., Usui, S. & Noda, M. (2009). Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS One 4, e4320.
Zhang, D.Q., Wong, K.Y., Sollars, P.J., Berson, D.M., Pickard, G.E. & McMahon, D.G. (2008). Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proceedings of the National Academy of Sciences of the United States of America 105, 1418114186.
Zhang, J., Ackman, J.B., Xu, H.P. & Crair, M.C. (2011). Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 15, 298307.
Zhao, X., Chen, H., Liu, X. & Cang, J. (2013a). Orientation-selective responses in the mouse lateral geniculate nucleus. Journal of Neuroscience 33, 1275112763.
Zhao, X., Liu, M. & Cang, J. (2013b). Sublinear binocular integration preserves orientation selectivity in mouse visual cortex. Nature Communications 4, 2088.
Zhu, Y., Xu, J., Hauswirth, W.W. & DeVries, S.H. (2014). Genetically targeted binary labeling of retinal neurons. Journal of Neuroscience 34, 78457861.
Ziburkus, J. & Guido, W. (2006). Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. Journal of Neurophysiology 96, 27752784.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed