Skip to main content Accessibility help

Neuronal organization and plasticity in adult monkey visual cortex: Immunoreactivity for microtubule-associated protein 2

  • Stewart H. C. Hendry (a1) and Monica A. Bhandari (a1)


Immunocytochemical staining for microtubule-associated protein 2 (MAP 2) was used to examine the morphology of neurons, the organization of neuronal groups, and the neurochemical plasticity of cells in adult monkey area 17. MAP 2-immunostained neurons are present through the depth of area 17 but are most intensely immunoreactive in layers IVB and VI. From layer IVB, separate groups of MAP 2-positive cells invade layers 1VA and IVCα. Clusters of cells protrude upward from superficial layer IVB and occupy the central core regions of the cytochrome oxidase (CO)-stained honeycomb in layer IVA, while large neurons typical of layer IVB are distributed in irregular clusters in the subjacent layer IVCa. The somata in the layer IVA honeycomb cores give off immunostained dendrites which remain largely within the core regions. Patches of MAP 2-positive neurons are also present in layers II and III, where they coincide with the CO-stained puffs.

Intravitreal injections of tetrodotoxin (TTX) into one eye of adult monkeys produce stripes of alternating light and dark MAP 2 immunostaining in layer IVC. Stripes of light immunostaining coincide with stripes of light CO staining, and correspond to reduced MAP 2 immunoreactivity within cortical neurons dominated by the TTX-injected eye. In layers II and III, the MAP 2 immunostaining of patches overlying the injected-eye columns is similarly reduced. No change occurs in the MAP 2 immunostaining of layer IVA.

These data suggest that the anatomical and physiological heterogeneity of layers IVA and IVCα arises from the periodic invasion of neurons characteristic of layer IVB, that the neurons in layer IVA have dendrites confined to thalamocortical-recipient or nonrecipient zones and that the expression of MAP 2 changes in adult cortical neurons following the loss of retinal input.



Hide All
Aoki, C. & Siekivitz, P. (1985). Ontogenetic changes in the cyclic adenosine 3′,5′-monophosphate-stimulatable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP 2): Effects of normal and dark rearing and of the exposure to light. Journal of Neuroscience 5, 24652483.
Bennett, M.K., Erondu, N.E. & Kennedy, M.B. (1983). Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain. Journal of Biological Chemistry 258, 1273512744.
Benson, D.L., Isackson, P.J., Gall, C.M. & Jones, E.G. (1991). Differential effects of monocular deprivation of glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in adult monkey visual cortex. Journal of Neuroscience 11, 3147.
Bernhardt, R. & Matus, A. (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: A difference between dendritic and axonal cytoskeleton. Journal of Comparative Neurology 226, 203221.
Blasdel, G.G. & Fitzpatrick, D. (1984). Physiological organization of layer 4 in macaque striate cortex. Journal of Neuroscience 4, 880895.
Bloom, G. & Vallee, R. (1983). Association of microtubule-associated protein 2 (MAP2) with microtubules and intermediate filaments in cultured brain cells. Journal of Cell Biology 96, 15231531.
Boothe, R.G., Greenough, W.T., Lund, J.S. & Wrege, K. (1979). A quantitative investigation of spine and dendrite development of neurons in visual cortex (area 17) of Macaca nemistrena monkeys. Journal of Comparative Neurology 186, 473490.
Born, R.T. & Tootell, R.B.H. (1991). Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 88, 70717075.
Campbell, M.J. & Morrison, J.H. (1989). Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in human and monkey neocortex. Journal of Comparative Neurology 282, 191205.
Campbell, M.J., Lewis, D.A., Benoit, R. & Morrison, J.H. (1987). Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28 (1–12) immunoreactive profiles in monkey neocortex. Journal of Neuroscience 7, 11331144.
Celio, M.R., Scharer, L., Morrison, J.H., Norman, A.W. & Bloom, F.E. (1986). Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex. Nature 323, 715717.
Coleman, P.D. & Riesen, A.H. (1968). Environmental effects on cortical dendritic fields. 1. Rearing in the dark. Journal of Anatomy (London) 102, 363374.
Cragg, B.G. (1967). Changes in visual cortex on first exposure of rats to light. Nature 215, 251253.
Cronly-Dillon, J. & Nona, S.N. (1988). Changes in cytoskeletal elements during postnatal development of cerebral cortex. In Cerebral Cortex, Volume 7: Development and Maturation of Cerebral Cortex, ed. Jones, E.G. & Peters, A., pp. 273308. New York: Plenum Press.
Decamilli, P., Miller, P.E., Navone, F., Theurkauf, W.E. & Vallee, R.B. (1984). Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience 11, 817846.
Deyoe, E.A., Hockfield, S., Garren, H. & Van Essen, D.C. (1990). Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Visual Neuroscience 5, 6781.
Fifkova, E. & Morales, M. (1989). Calcium-regulated contractile and cytoskeletal proteins in dendritic spines may control synaptic plasticity. Annals of the New York Academy of Science 568, 131137.
Fitzpatrick, D., Itoh, K. & Diamond, I.T. (1983). The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Samiri sciureus). Journal of Neuroscience 3, 673702.
Fitzpatrick, D., Lund, J.S. & Blasdel, G.G. (1985). Intrinsic connections of macaque striate cortex: Afferent and efferent connections of lamina 4C. Journal of Neuroscience 5, 33293349.
Fitzpatrick, D., Lund, J.S., Schmechel, D. & Towles, A.D. (1987). Distribution of GABAergic neurons and axon terminals in the macaque striate cortex. Journal of Comparative Neurology 264, 7391.
Graybiel, A.M. & Ragsdale, C.W. Jr (1982). Pseudocholinesterase staining in the primary visual pathway of the macaque monkey. Nature 299, 439442.
Hawken, M.J. & Parker, A.J. (1984). Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of Old World monkeys. Experimental Brain Research 54, 367372.
Heimann, R., Shelanski, M.L. & Liem, R.K.H. (1985). Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein. Journal of Cell Biology 260, 1216012166.
Hendrickson, A.E., Wilson, J.R. & Ogren, M.P. (1978). The neuro-anatomical organization of pathways between dorsal lateral geniculate nucleus and visual cortex in Old and New World primates. Journal of Comparative Neurology 182, 123136.
Hendrickson, A.E. (1982). The orthograde axoplasmic transport auto-radiographic technique and its implications for additional neuroanatomical analysis of the striate cortex. In Cytochemical Methods in Neuroanatomy, ed. Palay, S. & Chan-Palay, V., pp. 116. New York: Alan Liss, Inc.
Hendrickson, A.E. (1985). Dots, stripes and columns in monkey visual cortex. Trends in Neuroscience 8, 406410.
Hendrickson, A.E., Hunt, S.P. & Wu, J.-Y. (1981). Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex. Nature 292, 605607.
Hendry, S. & Carder, R. (1992). Organization and plasticity of GABA neurons and receptors in monkey visual cortex. Progress in Brain Research 90, 477502.
Hendry, S.H.C. & Jones, E.G. (1986). Reduction in number of GABA immunostained neurons in deprived-eye dominance columns of monkey area 17. Nature 320, 750753.
Hendry, S.H.C. & Jones, E.G. (1988). Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys. Neuron 1, 701712.
Hendry, S.H.C. & Kennedy, M.B. (1986). Immunoreactivity for a calmodulin-dependent protein kinase is selectively increased in macaque striate cortex after monocular deprivation. Proceedings of the National Academy of Sciences of the U.S.A. 83, 15361540.
Hendry, S.H.C., Jones, E.G. & Emson, P.C. (1984). Morphology, distribution, and synaptic relations of somatostatin and neuropeptide Y immunoreactive neurons in rat and monkey neocortex. Journal of Neuroscience 4, 24972517.
Hendry, S.H.C., Schwark, H.D., Jones, E.G. & Yan, J. (1987). Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. Journal of Neuroscience 7, 15031520.
Hendry, S.H.C., Jones, E.G. & Burstein, N. (1988 a). Activity-dependent regulation of tachykinin-like immunoreactivity in neurons of the monkey primary visual cortex. Journal of Neuroscience 8, 12251238.
Hendry, S.H.C., Jones, E.G., Hockfield, S. & Mckay, R.D.G. (1988 b). Neuronal populations stained with the monoclonal antibody, Cat-301, in the mammalian cerebral cortex and thalamus. Journal of Neuroscience 8, 518542.
Hendry, S.H.C., Fuchs, J., De Blas, A.L. & Jones, E.G. (1990). Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. Journal of Neuroscience 10, 24382450.
Herzoo, W. & Weber, K. (1978). Fractionation of brain microtubule-associated proteins which stimulate tubulin polymerization in vitro. European Journal of Biochemistry 92, 18.
Hevner, R.F. & Wong-Riley, M.T.T. (1990). Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system. Journal of Neuroscience 10, 13311340.
Horton, J. C. & Hubel, D.H. (1981). Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292, 762764.
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London) 195, 215243.
Hubel, D.H. & Wiesel, T.N. (1972). Laminar and columnar distribution of geniculocortical fibers in the macaque monkey. Journal of Comparative Neurology 146, 421450.
Hubel, D.H. & Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society B (London) 198, 159.
Hubener, M. & Bolz, J. (1991). Cell morphology and blob pattern in monkey striate cortex. Society for Neuroscience Abstracts 17, 117.
Humphrey, A.L. & Hendrickson, A.E. (1983). Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey. Journal of Neuroscience 3, 345358.
Itaya, S.K., Itaya, P.W. & Van Hoesen, G.W. (1984). Intracortical termination of the retino-geniculo-striate pathway studied with transsynaptic tracer (wheat germ agglutinin-horseradish peroxidase) and cytochrome oxidase staining in the macaque monkey. Brain Research 304, 303310.
Izant, J.G. & Mcintosh, J.R. (1980). Microtubule-associated proteins: A monoclonal antibody of MAP2 binds to differentiated neurons. Proceedings of the National Academy of Sciences of the U.S.A. 77, 47414745.
Jameson, L. & Caplow, M. (1981). Modification of microtubule steady-state dynamics by phosphorylation of the microtubule-associated proteins. Proceedings of the National Academy of Sciences of the U.S.A. 78, 34133417.
Jameson, L., Frey, T., Zeeberg, B., Dalldorf, F. & Caplow, M. (1980). Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry 19, 24722479.
Katz, L.C., Gilbert, C.D. & Wiesel, T.N. (1989). Local circuits and ocular dominance in monkey striate cortex. Journal of Neuroscience 9, 13891399.
Kosofsky, B.E., Molliver, M.E., Morrison, J.H. & Foote, S.L. (1984). The serotonin and norepinephrine innervation of primary visual cortex in the cynomolgus monkey (Macaca fascicularis). Journal of Comparative Neurology 230, 168178.
Kuljis, R.O. & Rakic, P. (1989). Neuropeptide Y-containing neurons are situated outside cytochrome-oxidase puffs in macaque visual cortex. Visual Neuroscience 2, 5762.
Laser, R.J. (1981). The dynamic ordering of neuronal cytoskeletons. Neuroscience Research Progress Bulletin 19, 731.
Leterrier, J.F., Liem, R.K.H. & Shelanski, M.L. (1982). Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganelle bridging. Journal of Cell Biology 95, 982986.
Levay, S., Hubel, D.H. & Wiesel, T.N. (1975). The pattern of ocular-dominance columns in macaque visual cortex revealed by a reduced silver stain. Journal of Comparative Neurology 159, 559576.
Lidow, M.S., Goldman-Rakic, P.S., Gallagher, D.W. & Rakic, P. (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone, and [3H]SCH23390. Neuroscience 40, 657671.
Lidow, M.S., Gallagher, D.W., Rakic, P. & Goldman-Rakic, P.S. (1989). Regional differences in the distribution of muscarinic cholinergic receptors in the macaque cerebral cortex. Journal of Comparative Neurology 289, 247259.
Livingstone, M.S. & Hubel, D.H. (1982). Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proceedings of the National Academy of Sciences of the U.S.A. 79, 60986101.
Livingstone, M.S. & Hubel, D.H. (1983). Specificity of cortico-cortical connections in monkey visual system. Nature 304, 531534.
Livingstone, M.S. & Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4, 309356.
Lund, J.S. (1973). Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto). Journal of Comparative Neurology 147, 455496.
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H. & Fuchs, A.F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164, 287304.
Lund, J.S., Boothe, R.G. & Lund, R.D. (1977). Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): a Golgi study from fetal day 127 to postnatal maturity. Journal of Comparative Neurology 176, 149188.
Malach, R. (1990). Dendritic arborizations of visual cortex neurons and their relation to the cytochrome oxidase (CO) rich blobs in monkey striate cortex. Society for Neuroscience Abstracts 16, 292.
Malach, R. (1991). Relationship of biocytin labeled neuronal processes to the cytochrome oxidase (CO) rich blobs in monkey striate cortex. Society for Neuroscience Abstracts 17, 117.
Malach, R. (1992). Dendritic sampling across processing streams in monkey striate cortex. Journal of Comparative Neurology 315, 303312.
Mates, S.L. & Lund, J.S. (1983). Spine formation and maturation of type 1 synapses on spiny stellate neurons in primate visual cortex. Journal of Comparative Neurology 221, 9197.
Matus, A. (1987). Putting together the neuronal cytoskeleton. Trends in Neuroscience 10, 186188.
Matus, A. (1988). Microtubule-associated proteins: Their potential role in determining neuronal morphology. Annual Review of Neuroscience 11, 2944.
Matus, A., Bernhardt, R. & Hugh-Jones, T. (1981). High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proceedings of the National Academy of Sciences of the U.S.A. 78, 30103014.
Matus, A. & Riederer, B. (1986). Microtubule-associated proteins in the developing brain. Annals of the New York Academy of Science 466, 167179.
Morrison, J.H., Foote, S.L., Molliver, M.E., Bloom, F.E. & Lidov, H.G.W. (1982). Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study. Proceedings of the National Academy of Sciences of the U.S.A. 79, 24012405.
Murphy, A.S.N. & Flavin, M. (1983). Microtubule assembly using the microtubule-associated protein MAP2 prepared in defined states of phosphorylation with protein kinase and phosphatase. European Journal of Biochemistry 137, 3746.
Murphy, D.B. & Borisy, G.G. (1975). Association of high-molecularweight proteins with microtubules and their role in microtubule assembly in vitro. Proceedings of the National Academy of Sciences of the U.S.A. 72, 26962700.
Murphy, D.B., Johnson, J.A. & Borisy, G.G. (1977). Role of tubulin-associated proteins in microtubule nucleation and elongation. Journal of Molecular Biology 117, 3352.
Peters, A. & Sethares, C. (1991 a). Organization of pyramidal neurons in area 17 of monkey visual cortex. Journal of Comparative Neurology 306, 123.
Peters, A. & Sethares, C. (1991 b). Layer IVA of Rhesus monkey primary visual cortex. Cerebral Cortex 1, 445462.
Rakic, P., Goldman-Rakic, P.S. & Gallagher, D. (1988). Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. Journal of Neuroscience 8, 36703690.
Rockland, K.S. & Lund, J.S. (1983). Intrinsic laminar lattice connections in primate visual cortex. Journal of Comparative Neurology 216, 303318.
Rosier, A.M., Orban, G.A. & Vandesande, F. (1990). Regional distribution of binding sites for neuropeptide Y in cat and monkey visual cortex determined by in vitro receptor autoradiography. Journal of Comparative Neurology 293, 486498.
Ruiz-Marcos, A. & Valverde, F. (1969). The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark-reared mice. Experimental Brain Research 8, 284294.
Sandell, J.H. (1986). NADPH diaphorase histochemistry in the macaque striate cortex. Journal of Comparative Neurology 251, 388397.
Shaw, C. & Cynader, M.C. (1986). Laminar distribution of receptors in monkey (Macaca fascicularis) geniculostriate system. Journal of Comparative Neurology 248, 301312.
Sloboda, R.D., Dentler, W.L. & Rosenbaum, J.L. (1976). Microtubule-associated proteins and stimulation of tubulin assembly in vitro. Biochemistry 15, 44974505.
Tigges, M., Tioces, J., Mcdonald, J.K., Slattery, M. & Fernandes, A. (1989). Postnatal development of neuropeptide Y-like immunoreactivity in area 17 of normal and visually deprived rhesus monkeys. Visual Neuroscience 2, 315328.
Tootell, R.B.H., Hamilton, S.L., Silverman, M.S. & Switkes, E. (1988 a). Functional anatomy of macaque striate cortex. 1. Ocular dominance, binocular interactions and baseline conditions. Journal of Neuroscience 8, 15001530.
Tootell, R.B.H., Silverman, M.S., Hamilton, S.L., De Valois, R.L. & Switkes, E. (1988 b). Functional anatomy of macaque striate cortex. 111. Color. Journal of Neuroscience 8, 15691593.
Tootell, R.B.H., Hamilton, S.L. & Switkes, E. (1988C). Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. Journal of Neuroscience 8, 15941609.
Tootell, R.B.H., Silverman, M.S., Hamilton, S.L. & De Valois, R.L. (1988d). Functional anatomy of macaque striate cortex. V. Spatial frequency. Journal of Neuroscience 8, 16101624.
Trojanowski, J.Q., Schuck, T., Schmidt, L. & Lee, V.M.-Y. (1989). Distribution of phosphate-independent MAP 2 epitopes revealed with monoclonal antibodies in microwave-denatured human nervous system tissues. Journal of Neuroscience Methods 29, 171180.
Trusk, T.C., Kaboord, W.S. & Wono-Riley, M.T.T. (1990). Effects of monocular enucleation, tetrodotoxin, and lid suture on cytochrome-oxidase reactivity in supragranular puffs of adult macaque striate cortex. Visual Neuroscience 4, 185204.
Ts'o, D.Y. & Gilbert, C.D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 8, 17121727.
Valverde, F. (1971). Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Research 33, 111.
Wong-Riley, M.T.T. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research 171, 1128.
Wong-Riley, M. & Carroll, E.W. (1984). Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature 307, 262


Related content

Powered by UNSILO

Neuronal organization and plasticity in adult monkey visual cortex: Immunoreactivity for microtubule-associated protein 2

  • Stewart H. C. Hendry (a1) and Monica A. Bhandari (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.