Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T00:35:33.963Z Has data issue: false hasContentIssue false

Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus

Published online by Cambridge University Press:  02 June 2009

Laurence R. Harri
Affiliation:
Department of Psychology, York University, Toronto, Ontario, M3J 1P3, Canada
Andrew T. Smith
Affiliation:
Department of Psychology, University of Wales College of Cardiff, Cardiff, CF1 3YG, UK

Abstract

We showed high-contrast, second-order motion stimuli to subjects whilst recording their horizontal eye movements. These stimuli were very poor at evoking optokinetic nystagmus. Smooth-pursuit eye movements and fixation were reduced by a masking band ±2.5 deg above and below an imaginary fixation point. First-order stimuli evoked vigorous optokinetic nystagmus (OKN) under identical conditions and also when matched for apparent contrast. These findings are discussed in terms of the site of detection of second-order motion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284299.CrossRefGoogle ScholarPubMed
Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.CrossRefGoogle ScholarPubMed
Albright, T.D. (1992). Form-cue invariant motion processing in primate visual cortex. Science 255, 11411143.CrossRefGoogle ScholarPubMed
Anstis, S.M. (1980). The perception of apparent motion. Philosophical Transactions of the Royal Society B 290, 153168.Google Scholar
Barlow, H.B. & Levick, W.R. (1965). The mechanism of directionally selective units in the rabbit retina. Journal of Physiology (London) 178, 477504.CrossRefGoogle Scholar
Braddick, O.J. (1974). A short-range process in apparent motion. Vision Research 25, 839847.Google Scholar
Braddick, O.J. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of the Royal Society B (London) 290, 137151.Google ScholarPubMed
Cavanagh, P. (1991). Short-range and long-range motion: Not a valid distinction. Spatial Vision 5, 303309.CrossRefGoogle Scholar
Cavanagh, P. & Mather, G. (1989). Motion: The long and short of it. Spatial Vision 4, 103129.Google Scholar
Chubb, C. & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America A 5, 19862007.CrossRefGoogle ScholarPubMed
Derrington, A.M. (1987). Distortion products in geniculate X cells: A physiological basis for masking by spatially modulated gratings? Vision Research 27, 13771386.CrossRefGoogle Scholar
Grzywacz, N.M. (1992). One-path model for contrast-independent perception of Fourier and non-Fourier motions. Investigative Ophthalmology and Visual Science (Suppl.) 33, 954.Google Scholar
Grzywacz, N.M. & Yuille, A.L. (1990). A model for the estimate of local image velocity by cells in the visual cortex. Proceedings of the Royal Society B (London) 239, 129161.Google Scholar
Harris, L.R., Lewis, T.L. & Maurer, D. (1991). Plaids used to evaluate cortical and subcortical involvement in human optokinetic nystagmus (OKN). Investigate Ophthalmology and Visual Science (Suppl.) 32, 1021.Google Scholar
Harris, L.R. & Smith, A.T. (1992). Second-order motion stimuli do not evoke optokinetic eye movements. Investigative Ophthalmology and Visual Science (Suppl.) 33, 2309.Google Scholar
Heeger, D.J. (1987). Model for the extraction of image flow. Journal of the Optical Society of America A 4, 14551471.CrossRefGoogle ScholarPubMed
Henning, G.B., Hertz, B.G. & Broadbent, D.E. (1975). Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vision Research 15, 887897.CrossRefGoogle ScholarPubMed
Hoffmann, K.-P. (1989). Control of the optokinetic reflex by the nucleus of the optic tract in primates. Progress in Brain Research 80, 173182.CrossRefGoogle ScholarPubMed
Howard, I.P. & Ohmi, M. (1984). The efficiency of the central and peripheral retina in driving human optokinetic nystagmus. Vision Research 24, 969976.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1961). Integrative action in the cat's lateral geniculate body. Journal of Physiology (London) 155, 385398.CrossRefGoogle ScholarPubMed
Miyoshi, T. (1985). Role of the central and peripheral retina upon optokinetic nystagmus —foveal and peripheral nystagmus. Acta OtoLaryngolica S419, 5361.CrossRefGoogle Scholar
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1986). The analysis of moving visual patterns. Experimental Brain Research (Suppl.) 11, 117152.Google Scholar
Murasugi, C.M., Howard, I.P. & Ohmi, M. (1986). Optokinetic nystagmus: The effects of stationary edges, alone and in combinations with central occlusion. Vision Research 26, 11551162.CrossRefGoogle ScholarPubMed
Pylyshyn, Z.W. & Storm, R.W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3, 151224.CrossRefGoogle ScholarPubMed
Reichardt, W. & Poggio, T. (1976). Visual control of orientation behavior in the fly. Quarterly Review of Biophysics 9, 311375.CrossRefGoogle ScholarPubMed
Schor, C. & Narayan, V. (1981). The influence of field size upon the spatial-frequency response of optokinetic nystagmus. Vision Research 21, 985994.CrossRefGoogle ScholarPubMed
Shapley, R. & Lennie, P. (1985). Spatial frequency analysis in the visual system. Annual Reviews of Neuroscience 8, 547583.CrossRefGoogle ScholarPubMed
Smith, A.T. & Harris, L.R. (1991). Use of plaid patterns to distinguish the corticofugal and direct retinal inputs to the brainstem optokinetic nystagmus generator. Experimental Brain Research 86, 324332.CrossRefGoogle Scholar
Triesman, A. (1986). Features and objects in visual processing. Scientific American 255(5), 114125.CrossRefGoogle Scholar
Ullman, S. (1979). The Interpretation of Visual Motion. Cambridge, Massachusetts: MIT Press.CrossRefGoogle Scholar
Van Den Berg, A.V. & Collewijn, H. (1988). Directional asymmetries of human optokinetic nystagmus. Experimental Brain Research 70, 597604.CrossRefGoogle ScholarPubMed
Van Dle, G.C. & Collewijn, H. (1986). Control of human optokinetic nystagmus by the central and peripheral retina — effects of partial visual-field masking, scotopic vision and central retinal scotomata. Brain Research 383, 185194.CrossRefGoogle Scholar
Van Santen, J.P.H. & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America A 2, 300321.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1991). A psychophysically motivated model for twodimensional motion perception. Investigative Ophthalmology and Visual Science (Suppl.) 32, 1101.Google Scholar