Skip to main content Accessibility help
×
Home

Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer

  • William C. Hall (a1) and Psyche Lee (a1)

Abstract

These experiments were designed to test the idea that the optic layer in the tree shrew, Tupaia belongeri, is functionally distinct and provides a link between the visuosensory superficial and the premotor intermediate layers of the superior colliculus. First, cells in the optic layer were intracellularly labeled with biocytin in living brain slices. Compared to cells in the adjacent lower part of the superficial gray layer, which have apical dendrites that ascend toward the tectal surface, optic layer cells have dendritic fields that are restricted for the most part to the optic layer itself. The differences in dendritic-field location imply that superficial gray and optic layer cells have different patterns of input. The axons of optic layer cells terminate densely within the optic layer and, in addition, project in a horizontally restricted fashion to the overlying superficial gray and subjacent intermediate gray layers. This pattern also is different from the predominantly descending interlaminar projections of lower superficial gray layer cells. Next cells in the intermediate gray layer were labeled in order to examine the relationships between optic layer cells and these subjacent neurons that project from the superior colliculus to oculomotor centers of the brain stem Neurons in the upper part of the intermediate gray layer send apical dendrites into the optic layer and therefore can receive signals from the superficial gray layer either directly, from descending axons of lower superficial gray layer cells, or indirectly, through intervening optic layer cells. In contrast, lower intermediate gray layer cells have more radiate dendritic fields that are restricted to the intermediate gray layer. Thus, these lower cells must depend on descending projections from optic or upper intermediate gray layer cells for signals from the superficial gray layer. Together, these results support the idea that the optic layer is a distinct lamina that provides a link between the superficial and intermediate gray layers. They also are consistent with the traditional view that descending intracollicular projections play a role in the selection of visual targets for saccades.

Copyright

References

Hide All
Abramson, B.P. & Chalupa, L.M. (1988). Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat. Journal of Comparative Neurology 271, 397418.
Adams, J.C. (1981). Heavy metal intensification of DAB-based reaction product. Journal of Histochemistry and Cytochemistry 29, 775.
Aghajanian, G.K. & Rasmussen, K. (1989). Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3, 331338.
Albano, J.E., Norton, T.T. & Hall, W.C. (1979). Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Research 173, 111.
Behan, M. (1984). An EM-autoradiographic analysis of the projection from cortical areas 17, 18 and 19 to the superior colliculus in the cat. Journal of Comparative Neurology 225, 591604.
Behan, M. & Appell, P.P. (1992). Intrinsic circuitry in the cat superior colliculus: Projections from the superficial layers. Journal of Comnarative Neurology 315, 230243.
Berson, D.M. (1985). Cat lateral suprasylvian cortex: Y-cell inputs and corticotectal projection. Journal of Neurophysiology 53, 544555
Berson, D.M. (1988). Retinal and cortical inputs to cat superior colliculus: Composition, convergence, and laminar specificity. In Progress in Brain Research, Vol. 75, ed. Hicks, T.P. & Benedek, G., pp. 1726. Amsterdam: Elsevier Science Publishers.
Casseday, J.H., Jones, D.R. & Diamond, I.T. (1979). Projections from cortex to tectum in the tree shrew, Tupaia glis. Journal of Comparative Neurology 185, 253292.
Chalupa, L.M., Williams, R.W. & Hughes, M.J. (1983). Visual response properties in the tecto-recipient zone of the cat's lateral posteriorpulvinar complex: A comparison with the superior colliculus. Journal of Neuroscience 3, 25872596.
Chevalier, G. & Deniau, J.M. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neuroscience 13, 277280.
Clemo, H.R. & Stein, B.E. (1986). Effects of cooling somatosensory cortex on response properties of tactile cells in the superior colliculus. Journal of Neurophysiology 55, 13521368.
Deng, S-Y., Goldberg, M.E., Segraves, M.A., Ungerleider, L.G. & Mishkin, M. (1986). The effect of unilateral ablation of the frontal eye fields on saccadic performance in the monkey. In Adaptive Processes in Visual and Oculomotor Systems, ed. Keller, E.L. & Zee, D.S., pp. 201208. Oxford: Pergamon.
Fischer, B. & Boch, R. (1981). Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkey. Experimental Brain Research 44, 129137.
Glimcher, P.W. & Sparks, D.L. (1992). Movement selection in advance of action in the superior colliculus. Nature 355, 542545.
Glimcher, P.W. & Sparks, D.L. (1993). Effects of low-frequency stimulation of the superior colliculus on spontaneous and visually guided saccades. Journal of Neurophysiology 69, 953964.
Goldberg, M.E. & Wurtz, R.H. (1972 a). Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. Journal of Neurophysiology 35, 542559.
Goldberg, M.E. & Wurtz, R.H. (1972 b). Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. Journal of Neurophysiology 35, 560574.
Goldman, P.S. & Nauta, W.J.H. (1976). Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Research 116, 145149.
Graham, J. & Casagrande, V.A. (1980). A light microscopic and electron microscopic study of the superficial layers of the superior colliculus of the tree shrew (Tupaia glis). Journal of Comparative Neurology 191, 133151.
Graham, J., Lin, C.-S. & Kaas, J.H. (1979). Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. Journal of Comparative Neurology 187, 557580.
Grantyn, A. & Grantyn, R. (1982). Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbospinal tract. Experimental Brain Research 46, 243256.
Grantyn, R. (1988). Gaze control through the superior colliculus: Structure and function. In Neuroanatomy of the Oculomotor System, ed. Büttner-Ennever, J.A., pp. 273333. Amsterdam: Elsevier Science Publishers.
Grantyn, R., Ludwig, R. & Eberhardt, W. (1984). Neurons of the superficial tectal gray. An intracellular HRP-study of the kitten superior colliculus in vitro. Experimental Brain Research 55, 172176.
Graybiel, A.M. (1978). A stereometric pattern of distribution of acetylthiocholinesterase in the deep layers of the superior colliculus. Nature 272, 539541.
Groh, J.M. & Sparks, D.L. (1996 a). Saccades to somatosensory targets. II. Motor convergence in primate superior colliculus. Journal of Neurophysiology 75, 428438.
Groh, J.M. & Sparks, D.L. (1996 b). Saccades to somatosensory targets. III. Eye-position-dependent somatosensory activity in primate superior colliculus. Journal of Neurophysiology 75, 439453.
Haenny, P.E., Maunsell, J.H.R. & Schiller, P.H. (1988). State dependent activity in monkey visual cortex. II. Retinal and cxtrarctinal factors in V4. Experimental Brain Research 69, 245259.
Hall, W.C., Fitzpatrick, D., Klatt, L.L. & Raczkowski, D. (1989). Cholinergic innervation of the superior colliculus in the cat. Journal of Comparative Neurology 287, 495514.
Hall, W.C. & Lee, P. (1993). Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer. Journal of Comparative Neurology 332, 213223.
Harting, J.K., Updyke, B.V. & Van Lieshout, D.P. (1992). Corticotectal projections in the cat: Anterograde transport studies of twenty-five cortical areas. Journal of Comparative Neurology 324, 379414.
Hikosaka, O. & Wurtz, R.H. (1985). Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in the monkey substantia nigra pars reticulata. Journal of Neurophysiology 53, 292308.
Hoffmann, K.-P. (1973). Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive-field properties. Journal of Neurophysiology 36, 409424.
Illing, R.-B. (1990). Choline acetyltransferase-like immunorcactivity in the superior colliculus and its relation to the pattern of acetylcholinesterase staining. Journal of Comparative Neurology 296, 3246.
Itoh, K., Conley, M. & Diamond, I.T. (1981). Different distributions of large and small ganglion cells in the cat after HRP injections of single layers of the lateral geniculate body and the superior colliculus. Brain Research 207, 147152.
Jay, M.F. & Sparks, D.L. (1987 a). Sensorimotor integration in the primate superior colliculus. I. Motor convergence. Journal of Neurophysiology 57, 2234.
Jay, M.F. & Sparks, D.L. (1987 b). Sensorimotor integration in the primate supcrior colliculus. II. Coordinates of auditory signals. Journal of Neurophysiology 57, 3555.
Kawamura, K. & Hashikawa, T. (1978). Cell bodies of origin of reticular projections from the superior colliculus in the cat: An experimental study with the use of horseradish peroxidase as a tracer. Journal of Comparative Neurology 182, 116.
Keating, E.G. (1991). Frontal eye field lesions impair predictive and visually-guided pursuit eye movements. Experimental Brain Research 86, 311323.
Keller, E.L. (1979). Colliculoreticular organization in the oculomotor system. In Reflex Control of Posture and Movement, Progress in Brain Research, ed. Granit, R. & Pompeiano, O., pp. 725734. Amsterdam: Elsevier.
Keller, E.L. & Edelman, J.A. (1994). Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. Journal of Neurophysiology 72, 27542770.
Kuypers, H.G.J.M. & Lawrence, D.G. (1967). Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Research 4, 151188.
Lee, P. & Hall, W.C. (1995). Interlaminar connections of the superior colliculus in the tree shrew. II. Projections from the superficial gray to the optic layer. Visual Neuroscience 12, 573588.
Leichnetz, G.R., Spencer, R.F., Hardy, S.G.P. & Astruc, J. (1981). The prefrontal corticotectal projection in the monkey; an anterograde and retrograde horseradish peroxidase study. Neuroscience 6, 10231041.
Lynch, J.C., Graybiel, A.M. & Lobeck, L.J. (1985). The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. Journal of Comparative Neurology 235, 241254.
Ma, T.P., Graybiel, A.M. & Wurtz, R.H. (1991). Location of saccaderelated neurons in the macaque superior colliculus. Experimental Brain Research 85, 2135.
May, P.J. & Hall, W.C. (1984). Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle. Journal of Comparative Neurology 226, 357376.
May, P.J., Hall, W.C., Porter, J.D. & Sakai, S.T. (1993). The comparative anatomy of nigral and cerebellar control over tectally initiated orienting movements. In Role of the Cerebellum and Basal Ganglia in Voluntary Movement, ed. Mano, N., Hamada, I. & Delong, M.R., pp. 221231. Amsterdam: Elsevier Science Publishers.
May, P.J. & Porter, J.D. (1992). The laminar distribution of macaque tectobulbar and tectospinal neurons. Visual Neuroscience 8, 257276.
Mays, L.E. & Sparks, D.L. (1980). Dissociation of visual and saccaderelated responses in superior colliculus neurons. Journal of Neurophysiology 43, 207232.
McIlwain, J.T. (1975). Visual receptive fields and their images in superior colliculus of the cat. Journal of Neurophysiology 38, 219230.
McIlwain, J.T. (1976). Large receptive fields and spatial transformations in the visual system. In International Review of Physiology, ed. Porter, R., pp. 223248, Baltimore, Maryland: University Park Press.
McIlwain, J.T. & Lufkin, R.B. (1976). Distribution of direct Y-cell inputs to the cat's superior colliculus: Are there spatial gradients? Brain Research 103, 133138.
Meredith, M.A., Wallace, M.T. & Stein, B.E. (1992). Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: Multisensory properties of the tecto-reticulo-spinal projection. Experimental Brain Research 88, 181186.
Mohler, C.W. & Wurtz, R.H. (1976). Organization of monkey superior colliculus: Intermediate layer cells discharging before eye movements. Journal of Neurophysiology 39, 722744.
Mooney, R.D., Nikoletseas, M.M., Hess, P.R., Allen, Z., Lewin, A.C. & Rhoades, R.W. (1988 a). The projection from the superficial to the deep layers of the superior colliculus: An intracellular horseradish peroxidase injection study in the hamster. Journal of Neuroscience 8, 13841399.
Mooney, R.D., Nikoletseas, M.M., Ruiz, S.A. & Rhoades, R.W. (1988 b). Receptive-field properties and morphological characteristics of the superior colliculus neurons that project to the lateral posterior and dorsal lateral geniculate nuclei in the hamster. Journal of Neurophysiology 59, 13331351.
Moschovakis, A.K. & Karabelas, A.B. (1985). Observations on the somatodendritic morphology and axonal trajectory of intracellularly HRP-labeled efferent neurons located in the deeper layers of the superior colliculus of the cat. Journal of Comparative Neurology 239, 276308.
Moschovakis, A.K., Karabelas, A.B. & Highstein, S.M. (1988 a). Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. Journal of Neurophysiology 60, 232262.
Moschovakis, A.K., Karabelas, A.B. & Highstein, S.M. (1988 b). Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. Journal of Neurophysiology 60, 263302.
Motter, B.C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2 and V4 in the presence of competing stimuli. Journal of Neurophysiology 70, 909919.
Motter, B.C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience 14, 21782189.
Mower, G., Gibson, A. & Glickstein, M. (1979). Tectopontine pathway in the cat: Laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. Journal of Neurophysiology 42, 115.
Munoz, D.P. & Guitton, D. (1986). Presaccadic burst discharges of tecto-reticulo-spinal neurons in the alert head-free and -fixed cat. Brain Research 398, 185190.
Munoz, D.P. & Guitton, D. (1991). Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. II. Sustained discharges during motor preparation and fixation. Journal of Neurophysiology 66, 16241641.
Munoz, D.P. & Wurtz, R.H. (1995). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. Journal of Neurophysiology 73, 23132333.
Naegele, J.R. & Katz, L.C. (1990). Cell surface molecules containing N-acetylgalactosamine are associated with basket cells and neurogliaform cells in cat visual cortex. Journal of Neuroscience 10, 540557.
Norden, J.J., Lin, C.S. & Kaas, J.H. (1978). Subcortical projections of the dorsomedial visual area (DM) of visual association cortex in the owl monkey, Aotus trivirgatus. Experimental Brain Research 32, 321334.
Robinson, D.L. & McClurkin, J.W. (1989). The visual superior colliculus and pulvinar. In The Neurobiology of Saccadic Eye Movements, ed. Wurtz, R.H. & Goldberg, M.F., pp. 337360. Amsterdam: Elsevier Science Publishers.
Schall, J.D. (1995). Neural basis of saccade target selection. Reviews in Neuroscience 6, 6385.
Schiller, P.H. & Koerner, F. (1971). Discharge characteristics of single units in superior colliculus of the alert monkey. Journal of Neurophysiology 34, 920937.
Schiller, P.H. & Stryker, M. (1972). Single unit recording and stimulation in superior colliculus of the alert monkey. Journal of Neurophysiology 35, 915924.
Schiller, P.H., Stryker, M., Cynader, M. & Berman, N. (1974) Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. Journal of Neurophysiology 37, 181194.
Schlag-Rey, M., Schlag, J. & Dassonville, P. (1992). How the frontal eye field can impose a saccade goal on superior colliculus neurons. Journal of Neurophysiology 67, 10031005.
Sparks, D.L. (1978). Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset. Brain Research 156, 116.
Sparks, D.L., Holland, R. & Guthrie, B.L. (1976). Size and distribution of movement fields in the monkey superior colliculus. Brain Research 113, 2134.
Stanton, G.B., Goldberg, M.E. & Bruce, C.J. (1988). Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. Journal of Comparative Neurology 271, 493506.
Stein, B.E., Magalhaes-Castro, B. & Kruger, L. (1976). Relationship between visual and tactile representations in cat superior colliculus. Journal of Neurophysiology 39, 401419.
Stein, B.E., Spencer, R.F. & Edwards, S.B. (1983). Corticotectal and corticothalamic efferent projections of SIV somatosensory cortex in cat. Journal of Neurophysiology 50, 896909.
Ungerleider, L.G., Desimone, R., Galkin, T.W. & Mishkin, M. (1984) Subcortical projections of area MT in the macaque. Journal of Comparative Neurology 223, 368386.
Van Gisbergen, J.A.M., Van Opstal, A.J. & Tax, A.A.M. (1987). Collicular ensemble coding of saccades based on vector summation. Neuroscience 21, 541555.
Walker, M.F., Fitzgibbon, E.J. & Goldberg, M.E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Journal of Neurophysiology 73, 19882003.
Weber, J.T., Martin, G.F., Behan, M., Huerta, M.F. & Harting, J.K. (1979). The precise origin of the tectospinal pathway in three common laboratory animals: A study using the horseradish peroxidase method. Neuroscience Letters 11, 121127.
Webster, M.J., Bachevalier, J. & Ungerleider, L.G. (1993). Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. Journal of Comparative Neurology 335, 7391.
Weliky, M., Kandler, K., Fitzpatrick, D. & Katz, L.C. (1995). Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neuron 15, 541552.
Wickelgren, B.G. (1971). Superior colliculus: Some receptive field properties of bimodally responsive cells. Science 173, 6972.
Wurtz, R.H. & Goldberg, M.F. (1972). Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. Journal of Neurophysiology 35, 575586.
Wurtz, R.H. & Mohler, C.W. (1976 a). Organization of monkey superior colliculus: Enhanced visual response of superficial layer cells. Journal of Neurophysiology 39, 745765.
Wurtz, R.H. & Mohler, C.W. (1976 b). Enhancement of visual responses in monkey striate cortex and frontal eye fields. Journal of Neuronhysiology 39, 766772.
Wurtz, R.H. & Optican, L.M. (1994). Superior colliculus cell types and models of saccade generation. Current Opinion in Neurobiology 4 857861.

Keywords

Related content

Powered by UNSILO

Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer

  • William C. Hall (a1) and Psyche Lee (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.