Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T16:32:23.768Z Has data issue: false hasContentIssue false

Identification of sodium channel subtypes induced in cultured retinal pigment epithelium cells

Published online by Cambridge University Press:  02 June 2009

Heather Dawes
Affiliation:
Department of Neurobiology and Behavior, State University of New York, Stony Brook
Gail Mandel
Affiliation:
Department of Neurobiology and Behavior, State University of New York, Stony Brook
Gary Matthews
Affiliation:
Department of Neurobiology and Behavior, State University of New York, Stony Brook

Abstract

Recent electrophysiological experiments have shown that retinal pigment epithelium (RPE) cells begin to produce neuronal-type voltage-dependent sodium currents when placed in dissociated cell culture. In this study, the sodium channel types induced in cultured rat RPE cells were identified. Sodium channel mRNAs encoding two distinct alpha subunits were detected in the cultured RPE cells, brain type II/IIA, and a novel rat mRNA which we have termed RET1. These two sodium channel types may correspond to the TTX-sensitive and TTX-insensitive components of sodium current reported previously in cultured rat RPE cells.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bosco, L. (1988). Transdifferentiation of ocular tissues in larval Xenopus laevis. Differentiation 39, 415.CrossRefGoogle ScholarPubMed
Botchkin, L.M. & Matthews, G. (1994). Voltage-dependent sodium channels develop in rat retinal pigment epithelium cells in culture. Proceedings of the National Academy of Sciences of the U.S.A. 91, 45644568.CrossRefGoogle ScholarPubMed
Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 52945299.CrossRefGoogle ScholarPubMed
Cooperman, S.S., Brubman, S.A., Barchi, R.L., Goodman, R.H. & Mandel, G. (1987). Modulation of sodium channel mRNA levels in rat skeletal muscle. Proceedings of the National Academy of Sciences of the U.S.A. 84, 87218725.CrossRefGoogle ScholarPubMed
Coulombre, J.L. & Coulombre, A.J. (1965). Regeneration of neural retina from the pigmented epithelium in the chick embryo. Developmental Biology 12, 7992.CrossRefGoogle ScholarPubMed
George, A.L. Jr, Knittle, T.J. & Tamkun, M.M. (1992). Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: Evidence for a distinct gene family. Proceedings of the National Academy of Sciences of the U.S.A. 89, 48934897.CrossRefGoogle ScholarPubMed
Hitchcock, P.F. & Raymond, P.A. (1992). Retinal regeneration. Trends in Neuroscience 15, 103108.CrossRefGoogle ScholarPubMed
Krafte, D.S., Goldin, A.L., Auld, V.J., Dunn, R.J., Davidson, N. & Lester, H.A. (1990). Inactivation of cloned Na channels expressed in Xenopus oocytes. Journal of General Physiology 96, 689706.CrossRefGoogle ScholarPubMed
Li, L.X. & Turner, J.E. (1988). Transplantation of retinal pigment epithelial cells to immature and adult rat hosts: Short- and long-term survival characteristics. Experimental Eye Research 47, 771785.CrossRefGoogle Scholar
Lopashov, G.V. (1991). Regenerative capacity of retinal cells and the maintenance of their differentiation. Ciba Foundation Symposia 160, 209217.Google ScholarPubMed
Mandel, G., Cooperman, S.S., Maue, R.A., Goodman, R.H. & Brehm, P. (1988). Selective induction of brain type II Na+ channels by nerve growth factor. Proceedings of the National Academy of Sciences of the U.S.A. 85, 924928.CrossRefGoogle ScholarPubMed
Mund, M.L. & Rodrigues, M.M. (1979). In The Retinal Pigment Epithelium, ed. Zinn, K.M. & Marmor, M.F., pp. 4552. Cambridge, Massachusetts: Harvard Univ. Press.Google Scholar
Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. & Numa, S. (1986). Existence of distinct sodium channel RNAs in rat brain. Nature 320, 188192.CrossRefGoogle ScholarPubMed
Neill, J.M. & Barnstable, C.J. (1990). Expression of the cell surface antigens RET-PE2 and N-CAM by rat retinal pigment epithelial cells during development and in tissue culture. Experimental Eye Research 51, 573583.CrossRefGoogle ScholarPubMed
Okamura, Y., Ono, F., Okagaki, R., Chong, J.A. & Mandel, G. (1994). Neural expression of a sodium channel gene requires cell-specific interactions. Neuron 13, 937948.CrossRefGoogle ScholarPubMed
Park, C.M. & Hollenberg, M.J. (1989). Basic fibroblast growth factor induces retinal regeneration in vivo. Developmental Biology 134, 201205.CrossRefGoogle ScholarPubMed
Park, C.M. & Hollenberg, M.J. (1993). Growth factor-induced retinal regeneration in vivo. International Review of Cytology 146, 4974.CrossRefGoogle ScholarPubMed
Pittack, C., Jones, M. & Reh, T.A. (1991). Basic fibroblast growth factor induced retinal pigment epithelium to generate neural retina in vitro. Development 113, 577588.CrossRefGoogle ScholarPubMed
Sanger, F., Nicklen, S. & Coulson, A.R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the U.S.A. 74, 54635467.CrossRefGoogle ScholarPubMed
Stone, L.S. (1950). The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes. Journal of Experimental Zoology 113, 931.CrossRefGoogle Scholar
Stone, L.S. & Steinitz, H. (1957). Regeneration of neural retina and lens from retina pigment cell grafts in adult newts. Journal of Experimental Zoology 135, 301318.CrossRefGoogle ScholarPubMed
Stühmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. (1987). Patch clamp characterization of sodium channels expressed from rat brain cDNA. European Biophysical Journal 14, 131138.CrossRefGoogle ScholarPubMed
Wen, R., Lui, G.M. & Steinberg, R.H. (1994). Expression of a tetrodotoxin-sensitive Na+ current in cultured human retinal pigment epithelial cells. Journal of Physiology (London) 476, 187196.CrossRefGoogle ScholarPubMed
Wetts, R. & Fraser, S.E. (1988). Multipotent precursors can give rise to all major cell types of the frog retina. Science 239, 11421145.CrossRefGoogle ScholarPubMed
Wetts, R. & Fraser, S.E. (1991). Microinjection of fluorescent tracers to study neural cell lineages. Development (Suppl.) 2, 18.CrossRefGoogle Scholar
Wetts, R., Serbedzua, G.N. & Fraser, S.E. (1989). Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Developmental Biology 136, 254263.CrossRefGoogle ScholarPubMed