Skip to main content Accessibility help
×
Home

Effects of ON channel blockade with 2-amino-4-phosphonobutyrate (APB) on brightness and contrast perception in monkeys

  • Robert P. Dolan (a1) and Peter H. Schiller (a1)

Abstract

Four experiments were performed to assess the effects of ON channel blockade with the glutamate analog 2-amino-4-phosphonobutyrate (APB) on brightness and contrast perception in monkeys. In Experiment 1, we demonstrate that stimuli brighter than background (incremental stimuli) appear less bright following ON channel blockade. This decrease in brightness is not enough to account for the previously observed threshold increase for detection of incremental stimuli following APB administration (Schiller et al., 1986; Dolan & Schiller, 1989). Experiment 2 examines the role of the ON and OFF channels in the interaction between local contrast and apparent brightness. The phenomenon of simultaneous contrast was examined under normal conditions and following APB administration. We find that even following ON channel blockade, the brightness of a stimulus is determined primarily by its contrast with its immediate background. This indicates that the lateral processes involved in simultaneous contrast can operate even when one channel has been compromised. In Experiment 3, we examined the role of the ON channel in detection of stimuli that appear by virtue of changes in background vs. foreground luminance. We find that the ON channel selectively conveys information pertaining not only to the temporal nature that defines the stimulus as incremental but also to the spatial features that define it as incremental. In Experiment 4, we test the hypothesis that incremental and decremental temporal luminance ramps are differentially processed by the ON and OFF channels to a higher degree than are step-luminance changes. We find that the detection of incremental ramps is no more affected than is the detection of incremental steps following APB administration.

Copyright

References

Hide All
Anstis, S.M. (1967). Visual adaptation to gradual change of intensity. Science 155, 710712.
Arkin, M.S. & Miller, R.F. (1987). Subtle actions of 2-amino-4-phosphonobutyrate (APB) on the OFF pathway in the mudpuppy retina. Brain Research 426, 142148.
Bolz, J., Wässle, H. & Thier, P. (1984). Pharmacological modulation of ON and OFF ganglion cells in the cat retina. Neuroscience 12(3), 875885.
Broca, A. & Sulzer, D. (1902). La sensation lumineuse en fonction du temps. Journal de Physiologie el Pathologie Générale 4, 632640.
Cavanagh, P. & Anstis, S.M. (1986). Brightness shift in drifting ramp gratings isolates a transient mechanism. Vision Research 26(6), 899908.
Dolan, R.P. (1992). ON and OFF channels in primate vision. M.I.T. Doctoral Thesis.
Dolan, R.P. & Schiller, P.H. (1989). Evidence for only depolarizing rod bipolar cells in the primate retina. Visual Neuroscience 2, 421424.
Hanly, M. & MacKay, D.M. (1979). Polarity-sensitive perceptual adaptation to temporal sawtooth modulation of luminance. Experimental Brain Research 35, 3746.
Horton, J.C. & Sherk, H. (1984). Receptive-field properties of the cat’s lateral geniculate nucleus in the absence of retinal ON-center input. Journal of Neuroscience 4, 374380.
Jung, R. (1973). Visual perception and neurophysiology. In Handbook of Sensory Physiology, Vol. VII/3: Central Processing of Visual Information A: Integrative Functions and Comparative Data, ed. Autrum, R., Jung, R., Loewenstein, W., MacKay, D.M. & Teuber, H.L., pp. 1152. Berlin, Heidelberg, New York: Springer-Verlag.
Knapp, A.G. & Mistler, L.A. (1983). Response properties of cells in rabbit’s lateral geniculate nucleus during reversible blockade of retinal ON-center channel. Journal of Neurophysiology 50, 12361245.
Knapp, A.G. & Schiller, P.H. (1984). The contribution of ON-bipolar cells to the electroretinogram of rabbits and monkeys: A study using 2-amino-4-phosphonobutyrate (APB). Vision Research 24(12), 18411846.
Krauskopf, J. (1980). Discrimination and detection of changes in luminance. Vision Research 20, 671677.
Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 3768.
Levick, W.R. (1973). Maintained discharge in the visual system and its role in information processing. In Handbook of Sensory Physiology, Vol. VII/3: Central Processing of Visual Information A: Integrative Functions and Comparative Data, ed. Autrum, R., Jung, R., Loewenstein, W., MacKay, D.M. & Teuber, H.L., pp. 575598. Berlin, Heidelberg, New York: Springer-Verlag.
Levine, M.W. & Shefner, J.M. (1977). Variability in ganglion cell firing patterns: Implications for separate “ON” and “OFF” processes. Vision Research 17, 765776.
Magnussen, S. & Glad, A. (1975). Brightness and darkness enhancement during flicker: Perceptual correlates of neuronal B- and D-sys-tems in human vision. Experimental Brain Research 22, 399413.
Massey, S.C., Redburn, D.A. & Crawford, M.J.L. (1983). The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina. Vision Research 23, 16071613.
McGuire, B.A., Stevens, J.K. & Sterling, P. (1984). Microcircuitry of bipolar cells in cat retina. Journal of Neuroscience 4, 29202938.
Savoy, R.L. & Burns, M.M. (1989). Isolated cone classes and the dis-embodied edge: New stimuli for psychophysics and neurophysiology. Investigative Ophthalmology and Visual Science (Suppl.) 30, 220.
Schiller, P.H. (1982). Central connections of the retinal ON and OFF pathways. Nature 297, 580583.
Schiller, P.H. (1984). The connections of the retinal ON and OFF pathways to the lateral geniculate nucleus of the monkey. Vision Research 24(9), 923932.
Schiller, P.H., Sandell, J.H. & Maunsell, J.H.R. (1986). Functions of the ON and OFF channels of the visual system. Nature 322, 824825.
Sherk, H. & Horton, J.C. (1984). Receptive-field properties in cat’s area 17 in the absence of ON-center geniculate input. Journal of Neuroscience 4, 381393.
Shiells, R.A., Falk, G. & Naghshineh, S. (1981). Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294, 592594.
Slaughter, M.M. & Miller, R.F. (1981). 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retina research. Science 211, 182184.

Keywords

Related content

Powered by UNSILO

Effects of ON channel blockade with 2-amino-4-phosphonobutyrate (APB) on brightness and contrast perception in monkeys

  • Robert P. Dolan (a1) and Peter H. Schiller (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.