REFERENCES
Abe, T.,
Sugihara, H.,
Nawa, H.,
Sheemoto, R.,
Mizuno, N., &
Nakanishi, S.
(1992).
Molecular characterization of a novel metabotrophic glutamate
receptor mGluR5 coupled to inosito phosphate Ca2+ signal
transduction.
Journal of Biological Chemistry
267,
13361–13368.
Anderson, M.E.,
Braun, A.P.,
Schulman, H., &
Premack, B.A.
(1994).
Multifunctional Ca2+/calmodulin-dependent protein
kinase mediates Ca(2+)-induced enhancement of the L-type
Ca2+ current in rabbit ventricular myocytes.
Circulatory Research
75,
854–861.
Bean, B.P.,
Nowycky, M.C., &
Tsien, R.W.
(1984).
β-Adrenergic modulation of calcium channels in frog ventricular
heart cells.
Nature
307,
371–375.
Bünemann, M.,
Gerhardstein, B.L.,
Gao, T., &
Hosey, M.M.
(1999).
Functional regulation of L-type calcium channels via
protein kinase A-mediated phosphorylation of the β2
subunit.
Journal of Biological Chemistry
274,
33851–33854.
Cachelin, A.B.,
Peyer, J.E.,
Kokubun, S., &
Reuter, H.
(1983).
Ca2+ channel modulation by 8-bromocyclic AMP in cultured
heart cells.
Nature
304,
462–464.
Cai, W. &
Pourcho, R.G.
(1999).
Localization of metabotropic glutamate receptors mGluR1alpha and
mGluR2/3 in the cat retina.
Journal of Computational Neurology
407,
427–437.
Carvalho, A.L.,
Duarte, C.B.,
Faro, C.J.,
Carvalho, A.P., &
Pires, E.V.
(1998).
Calcium influx trough AMPA receptors and through calcium channels
is regulated by protein kinase C in cultured retinal amacrine-like
cells.
Journal of Neurochemistry
70,
2112–2119.
Catterall, W.A.
(2000).
Structure and regulation of voltage-gated Ca2+ channels.
Annual Review of Cell Developmental Biology
16,
521–555.
Conn, C. &
Pin, J.P.
(1997).
Pharamcology and functions of metabotropic glutamate receptors.
Annual Review of Pharmacology and Toxicology
37,
205–237.
Cook, P.B. &
Werblin, F.S.
(1994).
Spike initiation and propagation in wide-field transient amacrine
cells of the salamander retina.
Journal of Neuroscience
14,
3852–3861.
Defer, N.,
Best-Belpomme, M., &
Hanoune, J.
(2000).
Tissue specificity and physiological relevance of various isoforms
of adenylyl cyclase.
American Journal of Physiology—Renal Physiology
279,
F400–F416.
De Jongh, K.S.,
Warner, C.,
Colvin, A.A., &
Catterall, W.A.
(1991).
Characterization of the two size forms of the α1 subunit of
skeletal muscle L-type calcium channels.
Proceedings of the National Academy of Sciences of the U.S.A.
88,
10778–10782.
Doherty, A.J.,
Palmer, M.J.,
Henley, J.M.,
Collingridge, G.L., &
Jane, D.E.
(1997).
(RS)-2-choloro-5-hydroxyphenylglycine (CHPG) activates mGlu5 but
not mGlu1, receptors expressed in CHO cells and potentiates NMDA
responses in the hippocampus.
Neuropharmacology
36,
2665–2667.
Dowling, J.E. &
Boycott, B.B.
(1966).
Organization of the primate retina: Electron microscopy.
Proceedings of the National Academy of Sciences of the U.S.A.
166,
80–111.
Dubin, M.W.
(1970).
The inner plexiform layer of the vertebrate retina: A quantitative
and comparative electron-microscopic analysis.
Journal of Comparative Neurology
140,
479–506.
Dzhura, I.,
Wu, Y.,
Zhang, R.,
Colbran, R.J.,
Hamilton, S.L., &
Anderson, M.E.
(2003).
C terminus L-type Ca2+ channel calmodulin-binding
domains are ‘auto-agonist’ ligands in rabbit ventricular
myocytes.
Journal of Physiology
550.3,
731–738.
Firth, S.I.,
Morgan, I.G.,
Boelen, M.K., &
Morgans, C.W.
(2001).
Localization voltage-sensitive L-Type calcium channels in the
chicken retina.
Clinical and Experimental Ophthalmology
29,
183–187.
Francesconi, A. &
Duvoisin, R.M.
(1998).
Role of the second third intracellular loops of the metabotropic
glutamate receptors in the mediation dual signal transduction
activation.
Journal of Biological Chemistry
273,
5615–5624.
French, S.W.,
Palmer, D.S., &
Caldwell, M.
(1978).
Cytochemical localization of adenylate cyclase in broken cell
preparations of the cerebral cortex.
Canadian Journal of Neurological Sciences
5,
33–40.
Gleason, E.,
Mobbs, P.,
Nuccitelli, R., &
Wilson, M.
(1992).
Development of functional calcium channels in the cultured avian
photoreceptors.
Visual Neuroscience
8,
315–327.
Gleason, E.,
Borges, S., &
Wilson, M.
(1993).
Synaptic transmission between pairs of retinal amacrine cells in
culture.
Journal of Neuroscience
13,
2359–2370.
Gleason, E.,
Borges, S., &
Wilson, M.
(1994).
Control of transmitter release from retinal amacrine cells by
Ca2+ influx and efflux.
Neuron
13,
1109–1117.
Gray, R. &
Johnston, D.
(1987).
Noradrenaline and β-adrenoceptor agonists increase activity of
voltage-dependent calcium channels in hippocampal neurons.
Nature
327,
620–622.
Gross, R.A.,
Uhler, M.D., &
MacDonald, R.L.
(1990).
The cyclic AMP-dependent protein kinase catalytic subunit
selectively enhances calcium currents in rat nodose neurones.
Journal of Physiology
429,
483–496.
Habermann, C.J.,
O'Brien, B.J.,
Wassle, H., &
Protti, D.A.
(2003).
AII amacrine cells express L-type calcium channels at their output
synapses.
Journal of Neuroscience
23,
6904–6913.
He, J.,
Pi, Y.,
Walker, J.W., &
Kamp, T.J.
(2000).
Endothelin-1 and photoreleased diacyclglycerol increase L-type
Ca2+ current by activation of protein kinase C in rat
ventricular myocytes.
Journal of Physiology
524.3,
807–820.
Hell, J.W.,
Yokoyama, C.T.,
Wong, S.T.,
Warner, C.,
Snutch, T.P., &
Catterall, W.A.
(1993).
Differential phosphorylation of two size forms of the neuronal
class C L-type calcium channel α1 subunit.
Journal of Biological Chemistry
268,
19451–19457.
Hoffpauir, B.K. &
Gleason, E.L.
(2002).
Activation of mGluR5 modulates GABAA receptor function
in retinal amacrine cells.
Journal of Neurophysiology
88,
1–11.
Huba, R. &
Hofmann, H.D.
(1991).
Transmitter-gated currents of GABAergic amacrine-like cells in
chick retinal cultures.
Visual Neuroscience
6,
303–314.
Huba, R.,
Schneider, H., &
Hofmann, H.D.
(1992).
Voltage gated currents of putative GABAergic amacrine cells in
primary cultures and in the retinal slice preparations.
Brain Research
577,
10–18.
Joly, C.,
Gomeza, J.,
Brabert, I.,
Curry, K.,
Bockaert, J., &
Pin, J.P.
(1995).
Molecular, functional and pharmacological characterization of the
metabotropic glutamate receptor type 5 splice variants comparison with
mGluR1.
Journal of Neuroscience
15,
3970–3981.
Kamp, T.J. &
Hell, J.W.
(2000).
Regulation of cardiac L-type calcium channels by protein kniase A
and protein kinase C.
Circulation Research
87,
1095–1102.
Kavalali, E.T.,
Hwang, K.S., &
Plummer, M.R.
(1997).
cAMP-dependent enhancement of dihydropyridine-sensitive calcium
channel availability in hippocampal neurons.
Journal of Neuroscience
17,
5334–5348.
Kolb, H. &
Famiglietti, E.V.
(1974).
Rod and cone pathways in the inner plexiform layer of cat retina.
Science
18,
647–649.
Koulen, P.,
Kuhn, R.,
Wassle, H., &
Brandstatter, J.H.
(1997).
Group 1 metabotropic glutamate receptors mGluR1 alpha and mGluR5a:
Localization in both synaptic layers of the rat retina.
Journal of Neuroscience
17,
2200–2211.
Kreimborg, K.M.,
Lester, M.L.,
Medler, K.F., &
Gleason, E.L.
(2001).
Group 1 metabotropic glutamate receptors are expressed in the
chicken retina and by cultured retinal amacrine cells.
Journal of Neurochemistry
77,
452–465.
Lacerda, A.E.,
Rampe, D., &
Brown, A.M.
(1988).
Effects of protein kinase C activators on cardiac Ca2+
channels.
Nature
335,
249–251.
Maguire, G.
(1999).
Spatial heterogeneity and function of voltage- and ligand-gated ion
channels in retinal amacrine neurons.
Proceedings of the Royal Society B (London)
266,
987–992.
McCool, B.A.,
Pin, J.P.,
Harpold, M.M.,
Brust, B.F.,
Stauderman, K.A., &
Lovinger, D.M.
(1998).
Rat group I metabotropic glutamate receptors inhibit neuronal
Ca2+ channels via multiple signal-transduction
pathways in HEK 293 cells.
Journal of Neurophysiology
79,
379–391.
McHugh, D.,
Sharp, E.M.,
Scheuer, T., &
Catterall, W.A.
(2000).
Inhibition of cardiac L-type calcium channels by protein kinase C
phosphorylation of two sites in the N-terminal domain.
Proceedings of the National Academy of Sciences of the U.S.A
97,
12334–12338.
Morgans, C.W.
(2001).
Localization of the alpha(1F) calcium channel subunit in the rat
retina.
Investigative Ophthalmology and Visual Science
42,
2414–2418.
Puri, T.S.,
Gerhardstein, B.L.,
Zhao, X.L.,
Ladner, M.B., &
Hosey, M.M.
(1997).
Differential effects of subunit interactions on protein kinase A-
and C-mediated phosphorylation of L-type calcium channels.
Biochemistry
36,
9605–9615.
Röhrkasten, A.,
Meyer, H.E.,
Nastainczyk, W.N.,
Sierber, M., &
Hofmann, F.
(1988).
cAMP-dependent protein kinase rapidly phosphoryaltes serine-687 of
the skeletal muscle receptor for calcium channel blockers.
Journal of Biological Chemistry
263,
15325–15329.
Rotman, E.I.,
DeJongh, K.S.,
Florio, V.,
Lai, Y., &
Catterall, W.A.
(1992).
Specific phosphoryaltion of a COOH-terminal site on the full-length
form of the α1 subunit of the skeletal muscle calcium channel by
cAMP-dependent protein kinase.
Journal of Biological Chemistry
267,
16100–16105.
Sanders, E.J.
(1987).
Ultrastructural cytochemical localization of adenylate cyclase in
the early chick embryo.
Cell Tissue Research
247,
465–468.
Sculptoreanu, A. &
de Groat, W.C.
(2003).
Protein kinase C is involved in neurokinin receptor modulation of
N- and L-type Ca2+ channels in DRG neurons of the adult
rat.
Journal of Neurophysiology
90,
21–31.
Sculptoreanu, A.,
Scheuer, T., &
Catterall, W.A.
(1993).
Voltage-dependent potentiation of L-type Ca2+ channel
due to phosphorylation by cAMP-dependent protein kinase.
Nature
364,
240–243.
Selkirk, J.V.,
Price, G.W.,
Nahorski, S.R., &
Cahlliss, R.A.J.
(2001).
Cell type-specific differences in the coupling of recombinant mGlu1
alpha receptors to endogenous G protein sub-populations.
Neuropharmacology
40,
645–646.
Sen, M. &
Gleason, E.
(2003).
Immuno-localization of mGluR1 and 5 in the synaptic layers of the
chicken retina.
Society for Neuroscience Abstract
33.
Sosa, R.,
Hoffpauir, B.,
Rankin, M.L.,
Bruch, R.C., &
Gleason, E.L.
(2002).
Metabotrophic glutamate receptor 5 and calcium signaling in retinal
amacrine cells.
Journal of Neurochemistry
81,
973–983.
Wantanabe, S.,
Koizumi, A.,
Matsunaga, S.,
Stocker, J.W., &
Kaneko, A.
(2000).
GABA-mediated inhibition between amacrine cells in the goldfish
retina.
Journal of Neurophysiology
84,
1826–1834.
West, A.E.,
Chen, W.G.,
Dalva, M.B.,
Dolmetsch, R.E.,
Kornhauser, J.M.,
Shaywitz, A.J.,
Takasu, M.A.,
Tao, X., &
Greenburg, M.E.
(2001).
Calcium regulation of neuronal gene expression.
Proceedings of the National Academy of Sciences of the U.S.A.
98,
11024–11031.
Wu, Y.,
Dzhura, I.,
Colbran, R.J., &
Anderson, M.E.
(2001).
Calmodulin kinase and a calmodulin-binding ‘IQ’ domain
facilitate L-type Ca2+ current in rabbit ventricular
myocytes by a common mechanism.
Journal of Physiology
535.3,
679–687.
Xiao, R.P.,
Cheng, H.,
Lederer, W.J.,
Suzuki, T., &
Lakatta, E.G.
(1994).
Dual regulation of Ca2+/calmodulin-dependent kinase
II activity by membrane voltage and by calcium influx.
Proceedings of the National Academy of Sciences of the U.S.A.
91,
9659–9663.
Yamamoto, S.,
Kawamura, K., &
James, T.N.
(1998).
Intracellular distribution of adenylate cyclase in human
cardiocytes determined by electron microscopic cytochemistry.
Microscopy Research and Technique
40,
479–487.
Yuan, W. &
Bers, D.M.
(1994).
Ca-dependent facilitation of cardiac Ca current is due to
Ca-calmodulin-dependent protein kinase.
American Journal of Physiology
267,
982–993.