Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-gtjl9 Total loading time: 0.258 Render date: 2021-04-21T03:10:20.296Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Two-frequency analysis of interactions elicited by Vernier stimuli

Published online by Cambridge University Press:  09 April 2001

JONATHAN D. VICTOR
Affiliation:
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York
MARY M. CONTE
Affiliation:
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York

Abstract

In five subjects, we measured visual evoked potentials (VEPs) elicited by Vernier targets in which the contrast of the two components of the stimuli were modulated by sinusoids at distinct frequencies f1 and f2. This approach allows for the extraction of VEP signatures of spatial interactions, namely, responses at intermodulation frequencies n1f1 + n2f2, without the need to introduce motion into the stimulus. The most prominent interactions were at the sum frequency f1 + f2, and, for frequency pairs that were sufficiently separated, the difference frequency f1f2. These responses had a systematic dependence on the temporal parameters of the stimulus, corresponding to an effective latency of 145 to 165 ms. Fourth-order interactions were also detected, particularly at the frequencies 2f1 ± 2f2. These VEP signatures of interaction were similar to interactions seen for colinear line segments separated by a gap. Thus, for Vernier stimuli devoid of motion, VEP signatures of interaction are readily detected but are not specific to hyperacuity displacements. The distribution of interactions across harmonic orders is consistent with local rectification preceding the spatial interactions. Their effective latencies and dependence on spatial parameters are consistent with interactions within V1 receptive fields or mediated by horizontal connections between cells with a similar orientation tuning within V1.

Type
Research Article
Copyright
2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 52 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two-frequency analysis of interactions elicited by Vernier stimuli
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Two-frequency analysis of interactions elicited by Vernier stimuli
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Two-frequency analysis of interactions elicited by Vernier stimuli
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *