Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-7x8lp Total loading time: 0.457 Render date: 2021-03-05T08:31:52.914Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI

Published online by Cambridge University Press:  04 May 2011

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
Department of Radiology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
Department of Radiology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey


Purpose: Cortical and subcortical functional activity stimulated via saccade and vergence eye movements were investigated to examine the similarities and differences between networks and regions of interest (ROIs). Methods: Blood oxygenation level-dependent (BOLD) signals from stimulus-induced functional Magnetic Resonance Imaging (MRI) experiments were analyzed studying 16 healthy subjects. Six types of oculomotor experiments were conducted using a block design to study both saccade and vergence circuits. The experiments included a simple eye movement task and a more cognitively demanding prediction task. A hierarchical independent component analysis (ICA) process began by analyzing individual subject data sets with spatial ICA to extract spatial independent components (sIC), which resulted in three ROIs. Using the time series from each of the three ROIs per subject, per oculomotor experiment, a temporal ICA was used to compute individual temporal independent components (tICs). For each of the three ROIs, the individual tICs from multiple subjects were entered into a second temporal ICA to compute group-level tICs for comparison. Results: Two independent spatial maps were observed for each subject (one sIC showing activity in the frontoparietal regions and another sIC in the cerebellum) during the six oculomotor tasks. Analysis of group-level tICs revealed an increased latency in the cerebellar region when compared to the frontoparietal region. Conclusion: Shared neuronal behavior has been reported in the frontal and parietal lobes, which may in part explain the segregation of frontoparietal functional activity into one sIC. The cerebellum uses multiple time scales for motor learning. This may result in an increased latency observed in the BOLD signal of the cerebellar group-level tIC when compared to the frontal and parietal group-level tICs. The increased latency offers a possible explanation to why ICA dissects the cerebellar activity into an sIC. The hierarchical ICA process used to calculate group-level tICs can yield insight into functional connectivity within complex neural networks.

Research Articles
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below.


Akao, T., Kurkin, S.A., Fukushima, J. & Fukushima, K. (2005). Visual and vergence eye movement-related responses of pursuit neurons in the caudal frontal eye fields to motion-in-depth stimuli. Experimental Brain Research 164, 92108.CrossRefGoogle ScholarPubMed
Alvarez, T.L., Alkan, Y., Gohel, S., Douglas Ward, B. & Biswal, B.B. (2010 a). Functional anatomy of predictive vergence and saccade eye movements in humans: A functional MRI investigation. Vision Research 50, 21632175.CrossRefGoogle ScholarPubMed
Alvarez, T.L., Bhavsar, M., Semmlow, J.L., Bergen, M.T. & Pedrono, C. (2005). Short-term predictive changes in the dynamics of disparity vergence eye movements. Journal of Vision 5, 640649.CrossRefGoogle Scholar
Alvarez, T.L., Semmlow, J.L., Yuan, W. & Munoz, P. (2002). Comparison of disparity vergence system responses to predictable and non-predictable stimulations. Current Psychology of Cognition 21, 343375.Google Scholar
Alvarez, T.L., Vicci, V.R., Alkan, Y., Kim, E.H., Gohel, S., Barrett, A.M., Chiaravalloti, N. & Biswal, B.B. (2010 b). Vision therapy in adults with convergence insufficiency: Clinical and functional magnetic resonance imaging measures. Optometry & Vision Science 87, E985E1002.CrossRefGoogle ScholarPubMed
Attwell, D. & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences 25, 621625.CrossRefGoogle ScholarPubMed
Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S. & Hyde, J.S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine 25, 390397.CrossRefGoogle ScholarPubMed
Batista, A.P., Buneo, C.A., Snyder, L.H. & Andersen, R.A. (1999). Reach plans in eye-centered coordinates. Science 285, 257260.CrossRefGoogle Scholar
Beckmann, C.F. & Smith, S.M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging 23, 137152.CrossRefGoogle ScholarPubMed
Binder, J.R., Liebenthal, E., Possing, E.T., Medler, D.A. & Ward, B.D. (2004). Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience 7, 295301.CrossRefGoogle Scholar
Biswal, B.B., Kannurpatti, S.S. & Rypma, B. (2007). Hemodynamic scaling of fMRI-BOLD signal: Validation of low-frequency spectral amplitude as a scalability factor. Magnetic Resonance Imaging 25, 13581369.CrossRefGoogle Scholar
Biswal, B.B. & Ulmer, J.L. (1999). Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. Journal of Computer Assisted Tomography 23, 265271.CrossRefGoogle ScholarPubMed
Buttner, U. & Waespe, W. (1984). Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Experimental Brain Research 55, 97104.CrossRefGoogle Scholar
Calhoun, V.D., Adali, T., McGinty, V.B., Pekar, J.J., Watson, T.D. & Pearlson, G.D. (2001 a). fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis. NeuroImage 14, 10801088.CrossRefGoogle Scholar
Calhoun, V.D., Adali, T., Pearlson, G.D. & Pekar, J.J. (2001 b). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping 14, 140151.CrossRefGoogle Scholar
Calhoun, V.D., Liu, J. & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 45, S163S172.CrossRefGoogle Scholar
Chen-Harris, H., Joiner, W.M., Ethier, V., Zee, D.S. & Shadmehr, R. (2008). Adaptive control of saccades via internal feedback. The Journal of Neuroscience 28, 28042813.CrossRefGoogle Scholar
Ciuffreda, K.J. & Tannen, B., ed. (1995). Eye Movement Basics for the Clinician. New York: Mosby.Google Scholar
Colby, C.L., Duhamel, J.R. & Goldberg, M.E. (1996). Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. Journal of Neurophysiology 76, 28412852.Google ScholarPubMed
Comon, P. (1994). Independent component analysis, a new concept? Signal Processing 36, 287314.CrossRefGoogle Scholar
Coubard, O.A. & Kapoula, Z. (2008). Saccades during symmetrical vergence. Graefe’s Archive for Clinical and Experimental Ophthalmology 246, 521536.CrossRefGoogle ScholarPubMed
Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers & Biomedical Research 29, 162173.CrossRefGoogle ScholarPubMed
Cumming, B.G. & Judge, S.J. (1986). Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey. Journal of Neurophysiology 55, 896914.Google ScholarPubMed
Desmurget, M., Pelisson, D., Grethe, J.S., Alexander, G.E., Urquizar, C., Prablanc, C. & Grafton, S.T. (2000). Functional adaptation of reactive saccades in humans: A PET study. Experimental Brain Research 132, 243259.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Verstynen, T., Schlerf, J. & Wiestler, T. (2010). Advances in functional imaging of the human cerebellum. Current Opinion in Neurology 23, 382387.Google Scholar
Duhamel, J.R., Colby, C.L. & Goldberg, M.E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 9092.CrossRefGoogle ScholarPubMed
Dyckman, K.A., Camchong, J., Clementz, B.A. & McDowell, J.E. (2007). An effect of context on saccade-related behavior and brain activity. NeuroImage 36, 774784.CrossRefGoogle Scholar
Esposito, F., Scarabino, T., Hyvarinen, A., Himberg, J., Formisano, E., Comani, S., Tedeschi, G., Goebel, R., Seifritz, E. & Di Salle, F. (2005). Independent component analysis of fMRI group studies by self-organizing clustering. NeuroImage 25, 193205.CrossRefGoogle ScholarPubMed
Ethier, V., Zee, D.S. & Shadmehr, R. (2008). Spontaneous recovery of motor memory during saccade adaptation. Journal of Neurophysiology 99, 25772583.CrossRefGoogle ScholarPubMed
Gamlin, P.D. & Yoon, K. (2000). An area for vergence eye movement in primate frontal cortex. Nature 407, 10031007.CrossRefGoogle ScholarPubMed
Gamlin, P.D., Yoon, K. & Zhang, H. (1996). The role of cerebro-ponto-cerebellar pathways in the control of vergence eye movements. Eye 10(Pt 2), 167171.CrossRefGoogle ScholarPubMed
Genovesio, A. & Ferraina, S. (2004). Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. Journal of Neurophysiology 91, 26702684.CrossRefGoogle Scholar
Gnadt, J.W. & Mays, L.E. (1995). Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space. Journal of Neurophysiology 73, 280297.Google ScholarPubMed
Guo, Y. & Pagnoni, G. (2008). A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage 42, 10781093.CrossRefGoogle Scholar
Harrison, R.V., Harel, N., Panesar, J. & Mount, R.J. (2002). Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cerebral Cortex 12, 225233.CrossRefGoogle Scholar
Himberg, J., Hyvarinen, A. & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 22, 12141222.CrossRefGoogle ScholarPubMed
Huettel, S.A. & McCarthy, G. (2001). Regional differences in the refractory period of the hemodynamic response: An event-related fMRI study. NeuroImage 14, 967976.CrossRefGoogle ScholarPubMed
Hung, G.K., Semmlow, J.L. & Ciuffreda, K.J. (1983). Identification of accommodative vergence contribution to the near response using response variance. Investigative Ophthalmology & Visual Science 24, 772777.Google ScholarPubMed
Hyvarinen, A., Karhunen, J. & Oja, E. (2001). Independent Component Analysis. New York: John Wiley & Sons.CrossRefGoogle ScholarPubMed
Iadecola, C. (2002). Intrinsic signals and functional brain mapping: Caution, blood vessels at work. Cerebral Cortex 12, 223224.CrossRefGoogle ScholarPubMed
Judge, S.J. & Cumming, B.G. (1986). Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation. Journal of Neurophysiology 55, 915930.Google ScholarPubMed
Kannurpatti, S.S., Motes, M.A., Rypma, B. & Biswal, B.B. (2010). Neural and vascular variability and the fMRI-BOLD response in normal aging. Magnetic Resonance Imaging 28, 466476.CrossRefGoogle ScholarPubMed
Kim, E.H., Granger-Donetti, B., Vicci, V.R. & Alvarez, T.L. (2010). The relationship between phoria and the ratio of convergence peak velocity to divergence peak velocity. Investigative Ophthalmology & Visual Science 51, 40174027.CrossRefGoogle ScholarPubMed
Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., Veijola, J., Moilanen, I., Isohanni, M., Zang, Y.F. & Tervonen, O. (2009). Functional segmentation of the brain cortex using high model order group PICA. Human Brain Mapping 30, 38653886.CrossRefGoogle ScholarPubMed
Krishnan, V.V., Farazian, F. & Stark, L. (1973). An analysis of latencies and prediction in the fusional vergence system. American Journal of Optometry & Archives of American Academy of Optometry 50, 933939.CrossRefGoogle ScholarPubMed
Kusunoki, M. & Goldberg, M.E. (2003). The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. Journal of Neurophysiology 89, 15191527.CrossRefGoogle ScholarPubMed
Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America 89, 56755679.CrossRefGoogle Scholar
Lee, Y.Y., Granger-Donetti, B., Chang, C. & Alvarez, T.L. (2009). Sustained convergence induced changes in phoria and divergence dynamics. Vision Research 49, 29602972.CrossRefGoogle Scholar
Leigh, R.J. & Zee, D.S. (2006). The Neurology of Eye Movements. Oxford: Oxford University Press.Google ScholarPubMed
Lewis, J.W., Brefczynski, J.A., Phinney, R.E., Janik, J.J. & DeYoe, E.A. (2005). Distinct cortical pathways for processing tool versus animal sounds. The Journal of Neuroscience 25, 51485158.CrossRefGoogle ScholarPubMed
Li, Y.O., Adali, T. & Calhoun, V.D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping 28, 12511266.CrossRefGoogle ScholarPubMed
Logothetis, N.K. & Wandell, B.A. (2004). Interpreting the BOLD signal. Annual Review of Physiology 66, 735769.CrossRefGoogle ScholarPubMed
Mays, L.E. (1984). Neural control of vergence eye movements: Convergence and divergence neurons in midbrain. Journal of Neurophysiology 51, 10911108.Google ScholarPubMed
McDowell, J.E., Dyckman, K.A., Austin, B.P. & Clementz, B.A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain & Cognition 68, 255270.CrossRefGoogle ScholarPubMed
McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J. & Sejnowski, T.J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping 6, 160188.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Medendorp, W.P., Goltz, H.C., Vilis, T. & Crawford, J.D. (2003). Gaze-centered updating of visual space in human parietal cortex. The Journal of Neuroscience 23, 62096214.Google ScholarPubMed
Merriam, E.P., Genovese, C.R. & Colby, C.L. (2003). Spatial updating in human parietal cortex. Neuron 39, 361373.CrossRefGoogle ScholarPubMed
Merriam, E.P., Genovese, C.R. & Colby, C.L. (2007). Remapping in human visual cortex. Journal of Neurophysiology 97, 17381755.CrossRefGoogle ScholarPubMed
Nitta, T., Akao, T., Kurkin, S. & Fukushima, K. (2008). Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys. Cerebral Cortex 18, 10421057.CrossRefGoogle ScholarPubMed
Ohyama, T., Nores, W.L., Medina, J.F., Riusech, F.A. & Mauk, M.D. (2006). Learning-induced plasticity in deep cerebellar nucleus. The Journal of Neuroscience 26, 1265612663.CrossRefGoogle ScholarPubMed
Oja, E. & Yuan, Z. (2006). The fastICA algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks 17, 13701381.CrossRefGoogle ScholarPubMed
Optican, L.M. & Robinson, D.A. (1980). Cerebellar-dependent adaptive control of primate saccadic system. Journal of Neurophysiology 44, 10581076.Google Scholar
Perlbarg, V., Bellec, P., Anton, J.L., Pelegrini-Issac, M., Doyon, J. & Benali, H. (2007). CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components. Magnetic Resonance Imaging 25, 3546.CrossRefGoogle ScholarPubMed
Poggio, G.E. (1995). Mechanisms of stereopsis in monkey visual cortex. Cerebral Cortex 5, 193204.CrossRefGoogle ScholarPubMed
Quaia, C., Lefevre, P. & Optican, L.M. (1999). Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology 82, 9991018.Google Scholar
Saad, Z.S., DeYoe, E.A. & Ropella, K.M. (2003). Estimation of FMRI response delays. NeuroImage 18, 494504.CrossRefGoogle Scholar
Saad, Z.S., Ropella, K.M., Cox, R.W. & DeYoe, E.A. (2001). Analysis and use of FMRI response delays. Human Brain Mapping 13, 7493.CrossRefGoogle Scholar
Schmid, A., Rees, G., Frith, C. & Barnes, G. (2001). An fMRI study of anticipation and learning of smooth pursuit eye movements in humans. Neuroreport 12, 14091414.CrossRefGoogle Scholar
Schmithorst, V.J. & Brown, R.D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group Independent Component Analysis of the mental addition and subtraction of fractions. NeuroImage 22, 14141420.CrossRefGoogle Scholar
Seifritz, E., Esposito, F., Hennel, F., Mustovic, H., Neuhoff, J.G., Bilecen, D., Tedeschi, G., Scheffler, K. & Di Salle, F. (2002). Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297, 17061708.CrossRefGoogle ScholarPubMed
Semmlow, J.L., Chen, Y.F., Granger-Donetti, B. & Alvarez, T.L. (2009). Correction of saccade-induced midline errors in responses to pure disparity vergence stimuli. Journal of Eye Movement Research 2, 113.Google Scholar
Semmlow, J.L., Chen, Y.F., Pedrono, C. & Alvarez, T. (2008). Saccadic behavior during the response to pure disparity vergence stimuli I: General properties. Journal of Eye Movement Research 1, 111.Google Scholar
Semmlow, J.L., Yuan, W. & Alvarez, T.L. (2002). Short-term adaptive control processes in vergence eye movements. Current Psychology of Cognition 21, 243261.Google Scholar
Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S. & Nagao, S. (2006). Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139, 767777.CrossRefGoogle ScholarPubMed
Sommer, M.A. & Wurtz, R.H. (2006). Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444, 374377.CrossRefGoogle ScholarPubMed
Sui, J., Adali, T., Pearlson, G., Yang, H., Sponheim, S.R., White, T. & Calhoun, V.D. (2010). A CCA+ICA based model for multi-task brain imaging data fusion and its application to schizophrenia. NeuroImage 51, 123134.CrossRefGoogle Scholar
Takagi, M., Tamargo, R. & Zee, D.S. (2003). Effects of lesions of the cerebellar oculomotor vermis on eye movements in primate: Binocular control. Progress in Brain Research 142, 1933.CrossRefGoogle ScholarPubMed
Talairach, J. & Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme.Google Scholar
Thach, W.T. (2007). On the mechanism of cerebellar contributions to cognition. Cerebellum 6, 163167.CrossRefGoogle Scholar
Umeno, M.M. & Goldberg, M.E. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. Journal of Neurophysiology 78, 13731383.Google ScholarPubMed
Umeno, M.M. & Goldberg, M.E. (2001). Spatial processing in the monkey frontal eye field. II. Memory responses. Journal of Neurophysiology 86, 23442352.Google Scholar
Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J.B. & Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI data sets. NeuroImage 51, 288299.CrossRefGoogle Scholar
Westheimer, G. (1954). Eye movement responses to a horizontally moving visual stimulus. A.M.A. Archives of Ophthalmology 52, 932941.CrossRefGoogle ScholarPubMed
Windischberger, C., Lamm, C., Bauer, H. & Moser, E. (2002). Consistency of inter-trial activation using single-trial fMRI: Assessment of regional differences. Brain Research. Cognitive Brain Research 13, 129138.CrossRefGoogle ScholarPubMed
Wurtz, R.H. (2008). Neuronal mechanisms of visual stability. Vision Research 48, 20702089.CrossRefGoogle ScholarPubMed
Xu-Wilson, M., Chen-Harris, H., Zee, D.S. & Shadmehr, R. (2009). Cerebellar contributions to adaptive control of saccades in humans. The Journal of Neuroscience 29, 1293012939.CrossRefGoogle ScholarPubMed
Zee, D.S., Yee, R.D., Cogan, D.G., Robinson, D.A. & Engel, W.K. (1976). Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 99, 207234.CrossRefGoogle ScholarPubMed
Zhang, H. & Gamlin, P.D. (1998). Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. Journal of Neurophysiology 79, 12551269.Google ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 4
Total number of PDF views: 55 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *