Skip to main content Accessibility help
×
×
Home

Multivariate Modeling of Body Mass Index, Pulse Pressure, Systolic and Diastolic Blood Pressure in Chinese Twins

  • Yili Wu (a1), Dongfeng Zhang (a1), Zengchang Pang (a1) (a2), Wenjie Jiang (a1), Shaojie Wang (a2), Shuxia Li (a3), Jacob von Bornemann Hjelmborg (a4) and Qihua Tan (a3) (a4)...

Abstract

Systolic and diastolic blood pressure, pulse pressure (PP), and body mass index (BMI) are heritable traits in human metabolic health but their common genetic and environmental backgrounds are not well investigated. The aim of this article was to explore the phenotypic and genetic associations among PP, systolic blood pressure (SBP), diastolic blood pressure (DBP), and BMI. The studied sample contained 615 twin pairs (17–84 years) collected in the Qingdao municipality. Univariate and multivariate structural equation models were fitted for assessing the genetic and environmental contributions. The AE model combining additive genetic (A) and unique environmental (E) factors produced the best fit for each four phenotypes. Heritability estimated in univariate analysis ranged from 0.42 to 0.74 with the highest for BMI (95% CI 0.70–0.78), and the lowest for PP (95% CI 0.34–0.49). The multivariate model estimated (1) high genetic correlations for DBP with SBP (0.87), PP with SBP (0.75); (2) low–moderate genetic correlations between PP and DBP (0.32), each BP component and BMI (0.24–0.37); (3) moderate unique environmental correlation for PP with SBP (0.68) and SBP with DBP (0.63); (4) there was no significant unique environmental correlation between PP and BMI. Overall, our multivariate analyses revealed common genetic and environmental backgrounds for PP, BP, and BMI in Chinese twins.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multivariate Modeling of Body Mass Index, Pulse Pressure, Systolic and Diastolic Blood Pressure in Chinese Twins
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multivariate Modeling of Body Mass Index, Pulse Pressure, Systolic and Diastolic Blood Pressure in Chinese Twins
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multivariate Modeling of Body Mass Index, Pulse Pressure, Systolic and Diastolic Blood Pressure in Chinese Twins
      Available formats
      ×

Copyright

Corresponding author

address for correspondence: Professor Dongfeng Zhang, Department of Public Health, Qingdao University Medical College, Deng Zhou Street 38, 266021 Qingdao, China. E-mail: zhangdf1961@126.com

References

Hide All
Benetos, A., Safar, M., Rudnichi, A., Smulyan, H., Richard, J. L., Ducimetieere, P., . . . Guize, L. (1997). Pulse pressure: A predictor of long-term cardiovascular mortality in a French male population. Hypertension, 30, 14101415.
Berrington de Gonzalez, A., Hartge, P., Cerhan, J. R., Flint, A. J., Hannan, L., MacInnis, R. J., . . . Thun, M. J. (2010). Body-mass index and mortality among 1.46 million white adults. New England Journal of Medicine, 363, 22112219.
Bochud, M., Bovet, P., Elston, R. C., Paccaud, F., Falconnet, C., Maillard, M., . . . Burnier, M. (2005). High heritability of ambulatory blood pressure in families of East African descent. Hypertension, 45, 445450.
De Pergola, G., Nardecchia, A., Amirati, A., Caccavo, D., Bavaro, S., & Silvestris, F. (2012). Abdominal obesity is characterized by higher pulse pressure: Possible role of free triiodothyronine. Journal of Obesity. Advance online publication. doi:10.1155/2012/656303.
De Pergola, G., Nardecchia, A., Guida, P., & Silvestris, F. (2011). Arterial hypertension in obesity: Relationships with hormone and anthropometric parameters. European Journal of Cardiovascular Prevention & Rehabilitation, 18, 240247.
DeStefano, A. L., Larson, M. G., Mitchell, G. F., Benjamin, E. J., Vasan, R. S., Li, J., . . . Levy, D. (2004). Genome-wide scan for pulse pressure in the national heart, lung and blood institute's Framingham heart study. Hypertension, 44, 152155.
Duan, H., Ning, F., Zhang, D., Wang, S., Tan, Q., Tian, X., . . . Pang, Z. (2013). The Qingdao twin registry: A status update. Twin Research and Human Genetics, 16, 7985.
Ehret, G. B., Munroe, P. B., Rice, K. M., Bochud, M., Johnson, A. D., Chasman, D. I., . . . Johnson, T. (2011). Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 478, 103109.
Franklin, S. S., Gustin, W. 4th, Wong, N. D., Larson, M. G., Weber, M. A., Kannel, W. B., . . . Levy, D. (1997). Hemodynamic patterns of age-related changes in blood pressure. The Framingham heart study. Circulation, 96, 308315.
Jermendy, G., Horvath, T., Littvay, L., Steinbach, R., Jermendy, A. L., Tarnoki, A. D., . . . Osztovits, J. (2011). Effect of genetic and environmental influences on cardiometabolic risk factors: A twin study. Cardiovascular Diabetology, 10, 96.
Min, J., Chiu, D. T., & Wang, Y. (2013). Variation in the heritability of body mass index based on diverse twin studies: A systematic review. Obesity Review, 14, 871882.
Neale, M. C., Roysamb, E., & Jacobson, K. (2006). Multivariate genetic analysis of sex limitation and G x E interaction. Twin Research and Human Genetics, 9, 481489.
Pang, Z., Ning, F., Unger, J., Johnson, C. A., Wang, S., Guo, Q., . . . Lee, L. (2006). The Qingdao twin registry: A focus on chronic disease research. Twin Research and Human Genetics, 9, 758762.
Tarnoki, A. D., Tarnoki, D. L., Bogl, L. H., Medda, E., Fagnani, C., Nistico, L., . . . Pietilainen, K. H. (2013). Association of body mass index with arterial stiffness and blood pressure components: A twin study. Atherosclerosis, 229, 388395.
Tarnoki, A. D., Tarnoki, D. L., Stazi, M. A., Medda, E., Cotichini, R., Nistico, L., . . . Schillaci, G. (2012). Heritability of central blood pressure and arterial stiffness: A twin study. Journal of Hypertension, 30, 15641571.
Tucker-Drob, E. M., Reynolds, C. A., Finkel, D., & Pedersen, N. L. (2013). Shared and unique genetic and environmental influences on aging-related changes in multiple cognitive abilities. Developmental Psychology, 50, 152166.
Wang, X., Ding, X., Su, S., Harshfield, G., Treiber, F., & Snieder, H. (2011). Genetic influence on blood pressure measured in the office, under laboratory stress and during real life. Hypertension Research, 34, 239244.
Williams, F. M., Cherkas, L. F., Spector, T. D., & MacGregor, A. J. (2004). A common genetic factor underlies hypertension and other cardiovascular disorders. BMC Cardiovascular Disorders, 4, 20.
Wu, T., Snieder, H., Li, L., Cao, W., Zhan, S., Lv, J., . . . Hu, Y. (2011). Genetic and environmental influences on blood pressure and body mass index in Han Chinese: A twin study. Hypertension Research, 34, 173179.
Zhang, D., Li, S., Tan, Q., & Pang, Z. (2012). Twin-based DNA methylation analysis takes the center stage of studies of human complex diseases. Journal of Genetics and Genomics, 39, 581586.
Zhang, S., Liu, X., Yu, Y., Hong, X., Christoffel, K. K., Wang, B., . . . Wang, X. (2009). Genetic and environmental contributions to phenotypic components of metabolic syndrome: A population-based twin study. Obesity (Silver Spring), 17, 15811587.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed