Skip to main content Accessibility help
×
Home

Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI

  • Casey T. Finnicum (a1), Stieneke Doornweerd (a2) (a3) (a4), Conor V. Dolan (a3) (a5), Justin M. Luningham (a6), Jeffrey J. Beck (a1), Gonneke Willemsen (a3) (a5), Erik A. Ehli (a1), Dorret I. Boomsma (a1) (a3) (a5), Richard G. Ijzerman (a2) (a3) (a4), Gareth E. Davies (a1) (a5) and Eco J. C. de Geus (a3) (a5)...

Abstract

Objective: The human gut microbiota has been demonstrated to be associated with a number of host phenotypes, including obesity and a number of obesity-associated phenotypes. This study is aimed at further understanding and describing the relationship between the gut microbiota and obesity-associated measurements obtained from human participants. Subjects/Methods: Here, we utilize genetically informative study designs, including a four-corners design (extremes of genetic risk for BMI and of observed BMI; N = 50) and the BMI monozygotic (MZ) discordant twin pair design (N = 30), in order to help delineate the role of host genetics and the gut microbiota in the development of obesity. Results: Our results highlight a negative association between BMI and alpha diversity of the gut microbiota. The low genetic risk/high BMI group of individuals had a lower gut microbiota alpha diversity when compared to the other three groups. Although the difference in alpha diversity between the lean and heavy groups of the BMI-discordant MZ twin design did not achieve significance, this difference was observed to be in the expected direction, with the heavier participants having a lower average alpha diversity. We have also identified nine OTUs observed to be associated with either a leaner or heavier phenotype, with enrichment for OTUs classified to the Ruminococcaceae and Oxalobacteraceae taxonomic families. Conclusion: Our study presents evidence of a relationship between BMI and alpha diversity of the gut microbiota. In addition to these findings, a number of OTUs were found to be significantly associated with host BMI. These findings may highlight separate subtypes of obesity, one driven by genetic factors, the other more heavily influenced by environmental factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI
      Available formats
      ×

Copyright

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

address for correspondence: Eco de Geus, Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam. van der Boechorststraat 1, 1081 BT Amsterdam, the Netherlands. E-mail: eco.de.geus@vu.nl

Footnotes

Hide All
*

These authors contributed equally.

Footnotes

References

Hide All
Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., . . . Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 1571815723.
Bailey, L. C., Forrest, C. B., Zhang, P., Richards, T. M., Livshits, A., & DeRusso, P. A. (2014). Association of antibiotics in infancy with early childhood obesity. JAMA Pediatrics, 168, 10631069.
Beaumont, M., Goodrich, J. K., Jackson, M. A., Yet, I., Davenport, E. R., Vieira-Silva, S., . . . Bell, J. T. (2016). Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 17, 189.
Borre, Y. E., O'Keeffe, G. W., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2014). Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends in Molecular Medicine, 20, 509518.
Bruce-Keller, A. J., Salbaum, J. M., Luo, M., Blanchard, E. t., Taylor, C. M., Welsh, D. A., & Berthoud, H. R. (2015). Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biological Psychiatry, 77, 607615.
Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., . . . Tiedje, J. M. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141D145.
Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., . . . Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 30473052.
Donohoe, D. R., Garge, N., Zhang, X., Sun, W., O'Connell, T. M., Bunger, M. K., & Bultman, S. J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabolism, 13, 517526.
Doornweerd, S., RG, I. J., van der Eijk, L., Neter, J. E., van Dongen, J., van der Ploeg, H. P., & de Geus, E. J. (2016). Physical activity and dietary intake in BMI discordant identical twins. Obesity (Silver Spring), 24, 13491355.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 21942200.
Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., . . . Ley, R. E. (2014). Human genetics shape the gut microbiome. Cell, 159, 789799.
Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., . . . Hazen, S. L. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19, 576585.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 51125120.
Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 1107011075.
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444, 10221023.
Lim, M. Y., You, H. J., Yoon, H. S., Kwon, B., Lee, J. Y., Lee, S., . . . Ko, G. (2016). The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut, 66, 10311038.
Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., . . . Speliotes, E. K. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518, 197206.
Monteiro, R., & Azevedo, I. (2010). Chronic inflammation in obesity and the metabolic syndrome. Mediators of Inflammation, 2010, Article ID 289645.
Mueller, N. T., Whyatt, R., Hoepner, L., Oberfield, S., Dominguez-Bello, M. G., Widen, E. M., . . . Rundle, A. (2015). Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. International Journal of Obesity, 39, 665670.
Nguyen, T. L., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms, 8, 116.
Noon, J. P., Walker, B. R., Webb, D. J., Shore, A. C., Holton, D. W., Edwards, H. V., & Watt, G. C. (1997). Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. Journal of Clinical Investigation, 99, 18731879.
Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glockner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 71887196.
Rao, S., Schieber, A. M., O'Connor, C. P., Leblanc, M., Michel, D., & Ayres, J. S. (2017). Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell, 168, 503516.
Raymond, F., Ouameur, A. A., Deraspe, M., Iqbal, N., Gingras, H., Dridi, B., . . . Corbeil, J. (2016). The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME Journal, 10, 707720.
Richmond, R. C., Davey Smith, G., Ness, A. R., den Hoed, M., McMahon, G., & Timpson, N. J. (2014). Assessing causality in the association between child adiposity and physical activity levels: A Mendelian randomization analysis. PLoS Medicine, 11, e1001618.
Rodriguez-Hernandez, H., Simental-Mendia, L. E., Rodriguez-Ramirez, G., & Reyes-Romero, M. A. (2013). Obesity and inflammation: Epidemiology, risk factors, and markers of inflammation. International Journal of Endocrinology, 2013, 678159.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., . . . Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 75377541.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60.
Smits, L. P., Bouter, K. E., de Vos, W. M., Borody, T. J., & Nieuwdorp, M. (2013). Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 145, 946953.
Stubbe, J. H., de Moor, M. H., Boomsma, D. I., & de Geus, E. J. (2007). The association between exercise participation and well-being: A co-twin study. Preventive Medicine, 44, 148152.
Sze, M. A., & Schloss, P. D. (2016). Looking for a signal in the noise: Revisiting obesity and the microbiome. MBio, 7, e01018–16.
Torok, V. A., Allison, G. E., Percy, N. J., Ophel-Keller, K., & Hughes, R. J. (2011). Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Applied and Environmental Microbiology, 77, 33803390.
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., . . . Gordon, J. I. (2009). A core gut microbiome in obese and lean twins. Nature, 457, 480484.
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 10271031.
van Dongen, J., Willemsen, G., Heijmans, B. T., Neuteboom, J., Kluft, C., Jansen, R., . . . Boomsma, D. I. (2015). Longitudinal weight differences, gene expression and blood biomarkers in BMI-discordant identical twins. International Journal of Obesity, 39, 899909.
Villanueva-Millan, M. J., Perez-Matute, P., & Oteo, J. A. (2015). Gut microbiota: A key player in health and disease. A review focused on obesity. Journal of Physiology and Biochemistry, 71, 509525.
Willemsen, G., de Geus, E. J., Bartels, M., van Beijsterveldt, C. E., Brooks, A. I., Estourgie-van Burk, G. F., . . . Boomsma, D. I. (2010). The Netherlands Twin Register biobank: A resource for genetic epidemiological studies. Twin Research and Human Genetics, 13, 231245.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Finnicum et al. supplementary material
Finnicum et al. supplementary material 1

 Unknown (174 KB)
174 KB
WORD
Supplementary materials

Finnicum et al. supplementary material
Finnicum et al. supplementary material 2

 Word (37 KB)
37 KB
WORD
Supplementary materials

Finnicum et al. supplementary material
Finnicum et al. supplementary material 3

 Word (82 KB)
82 KB
WORD
Supplementary materials

Finnicum et al. supplementary material
Finnicum et al. supplementary material 4

 Word (122 KB)
122 KB
UNKNOWN
Supplementary materials

Finnicum et al. supplementary material
Finnicum et al. supplementary material 5

 Unknown (2.5 MB)
2.5 MB
UNKNOWN
Supplementary materials

Finnicum et al. supplementary material
Finnicum et al. supplementary material 6

 Unknown (368 KB)
368 KB
UNKNOWN
Supplementary materials

Finnicum et al. supplementary material
Finnicum et al. supplementary material 7

 Unknown (25 KB)
25 KB

Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI

  • Casey T. Finnicum (a1), Stieneke Doornweerd (a2) (a3) (a4), Conor V. Dolan (a3) (a5), Justin M. Luningham (a6), Jeffrey J. Beck (a1), Gonneke Willemsen (a3) (a5), Erik A. Ehli (a1), Dorret I. Boomsma (a1) (a3) (a5), Richard G. Ijzerman (a2) (a3) (a4), Gareth E. Davies (a1) (a5) and Eco J. C. de Geus (a3) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed