Skip to main content Accessibility help
×
×
Home

Genetic and Environmental Influences on Cardiovascular Disease Risk Factors: A Study of Chinese Twin Children and Adolescents

  • Fuling Ji (a1) (a2), Feng Ning (a2), Haiping Duan (a2), Jaakko Kaprio (a3) (a4) (a5), Dongfeng Zhang (a1), Dong Zhang (a6), Shaojie Wang (a2), Qing Qiao (a3), Jianping Sun (a2), Jiwei Liang (a2), Zengchang Pang (a2) and Karri Silventoinen (a3) (a7)...

Abstract

We evaluated the genetic and environmental contributions to metabolic cardiovascular risk factors and their mutual associations. Eight metabolic factors (body mass index, waist circumference, waist-to-hip ratio, systolic blood pressure, diastolic blood pressure, total serum cholesterol, serum triglycerides, and serum uric acid) were measured in 508 twin pairs aged 8–17 years from the Qingdao Twin Registry, China. Linear structural equation models were used to estimate the heritability of these traits, as well as the genetic and environmental correlations between them. Among boys, body mass index and uric acid showed consistently high heritability (0.49–0.81), whereas other traits showed moderate to high common environmental variance (0.37–0.73) in children (8–12 years) and adolescents (13–17 years) except total cholesterol. For girls, moderate to high heritability (0.39–0.75) were obtained for six metabolic traits in children, while only two traits showed high heritability and others mostly medium to large common environmental variance in adolescents. Genetic correlations between the traits were strong in both boys and girls in children (r g = 0.64–0.99 between body mass index and diastolic blood pressure; r g = 0.71–1.00 between body mass index and waist circumference), but decreased for adolescent girls (r g = 0.51 between body mass index and waist-to-hip ratio; r g = 0.55 between body mass index and uric acid; r g = 0.61 between body mass index and systolic blood pressure). The effect of genetic factors on most metabolic traits decreased from childhood to adolescence. Both common genetic and specific environmental factors influence the mutual associations among most of the metabolic traits.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic and Environmental Influences on Cardiovascular Disease Risk Factors: A Study of Chinese Twin Children and Adolescents
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic and Environmental Influences on Cardiovascular Disease Risk Factors: A Study of Chinese Twin Children and Adolescents
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic and Environmental Influences on Cardiovascular Disease Risk Factors: A Study of Chinese Twin Children and Adolescents
      Available formats
      ×

Copyright

Corresponding author

address for correspondence: Zengchang Pang, Qingdao Center for Disease Control and Prevention, No 175. Shandong Road, 266033, Qingdao, China. E-mail: cdcpang@126.com

References

Hide All
Alderman, M., & Aiyer, K. J. V. (2004). Uric acid: Role in cardiovascular disease and effects of losartan. Current Medical Research and Opinion, 20, 369379.
Becker, A., Busjahn, A., Faulhaber, H. D., Bähring, S., Robertson, J., Schuster, H., & Luft, F. C. (1997). Twin zygosity. Automated determination with microsatellites. The Journal of Reproductive Medicine, 42, 260266.
Benyamin, B., Sørensen, T. I. A., Schousboe, K., Fenger, M., Visscher, P. M., & Kyvik, K. O. (2007). Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome? Diabetologia, 50, 18801888.
Berenson, G. S., Srinivasan, S. R., Bao, W., Newman, W. P. 3rd, Tracy, R. E., & Wattigney, W. A. (1998). Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The bogalusa heart study. The New England Journal of Medicine, 338, 16501656.
Bodurtha, J. N., Chen, C. W., Mosteller, M., Nance, W. E., Schieken, R. M., & Segrest, J. (1991). Genetic and environmental contributions to cholesterol and its subfractions in 11-year-old twins. The Medical College of Virginia Twin Study. Arteriosclerosis and Thrombosis, 11, 844850.
Chen, T. J., Modin, B., Ji, C. Y., & Hjern, A. (2011). Regional, socioeconomic and urban-rural disparities in child and adolescent obesity in China: A multilevel analysis. Acta Paediatrica, 100, 15831589.
Choh, A. C., Gage, T. B., McGarvey, S. T., & Comuzzie, A. G. (2001). Genetic and environmental correlations between various anthropometric and blood pressure traits among adult samoans. American Journal of Physical Anthropology, 115, 304311.
Duan, H. P., Ning, F., Zhang, D. F., Wang, S. J., Zhang, D., Tan, Q. H., . . . Pang, Z. C. (2013). The Qingdao Twin Registry: A status update. Twin Research and Human Genetics, 16, 7985.
Duan, H. P., Pang, Z. C., Zhang, D. F., Li, S. X., Kruse, T. A., Kyvik, K. O., . . . Tan, Q. H. (2011). Genetic and environmental dissections of sub-phenotypes of metabolic syndrome in the Chinese population: a twin-based heritability study. Obesity Facts, 4, 99104.
Elder, S. J., Lichtenstein, A. H., Pittas, A. J., Roberts, S. B., Fuss, P. J., Greenberg, A. S., . . . Neale, M. C. (2009). Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome. Journal of Lipid Research, 50, 19171926.
Evans, A., Van Baal, G. C. M., McCarron, P., DeLange, M., Soerensen, T. I., De Geus, E. J. C., . . . Boomsma, D. I. (2003). The genetics of coronary heart disease: The contribution of twin studies. Twin Research, 6, 432441.
Ford, E. S., Li, C. Y., Cook, S., & Choi, H. K. (2007). Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation, 115, 25262532.
Foster, T. A., Voors, A. W., Webber, L. S., Frerichs, R. R., & Berenson, G. S. (1977). Anthropometric and maturation measurements of children, ages 5 to 14 years, in a biracial community–the Bogalusa Heart Study. The American Journal of Clinical Nutrition, 30, 582591.
Hubert, H. B., Feinleib, M., McNamara, P. M., & Castelli, W. P. (1983). Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study. Circulation, 67, 968977.
Hur, Y. M. (2007). Sex difference in heritability of BMI in South Korean adolescent twins. Obesity (Silver Spring), 15, 29082911.
Iliadou, A., Snieder, H., Wang, X., Treiber, F. A., & Davis, C. L. (2005). Heritabilities of lipids in young European American and African American twins. Twin Research and Human Genetics, 8, 492498.
Kavey, R. E. W., Allada, V., Daniels, S. R., Hayman, L. L., McCrindle, B. W., Newburger, J. W., . . . Steinberger, J. (2007). Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on population and prevention science; the Councils on Cardiovascular Disease in the young, epidemiology and prevention, nutrition, physical activity and metabolism, high blood pressure research, cardiovascular nursing, and the kidney in heart disease; and the interdisciplinary working group on quality of care and outcomes research. The Journal of Cardiovascular Nursing, 22, 218253.
Lajunen, H. R., Kaprio, J., Keski-Rahkonen, A., Rose, R. J., Pulkkinen, L., Rissanen, A., & Silventoinen, K. (2009). Genetic and environmental effects on body mass index during adolescence: a prospective study among Finnish twins. International Journal of Obesity, 33, 559567.
Li, L. M., Gao, W. J., Yu, C. Q., Lv, J., Cao, W. H., Zhan, S. Y., . . . Hu, Y. H. (2013). The Chinese National Twin Registry: An update. Twin Research and Human Genetics, 16, 8690.
Lobstein, T., Baur, L., & Uauy, R. (2004). Obesity in children and young people: a crisis in public health. Obesity Reviews, 5, 4104.
Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., . . . Memish, Z. A. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: Asystematic analysis for the Global Burden Of Disease Study 2010. Lancet, 380, 20952128.
Ma, H. M., Chen, S. K., Chen, R. M., Zhu, C., Xiong, F., Li, T., . . . Du, M. L. (2011). Pubertal development timing in urban Chinese boys. International Journal of Andrology, 34, e435445.
Ma, H. M., Du, M. L., Luo, X. P., Chen, S. K., Liu, L., Chen, R. M., . . . Liu, G. L. (2009). Onset of breast and pubic hair development and menses in urban Chinese girls. Pediatrics, 124, e269277.
Nelson, T. L., Vogler, G. P., Pedersen, N. L., & Miles, T. P. (1999). Genetic and environmental influences on waist-to-hip ratio and waist circumference in an older Swedish twin population. International Journal of Obesity and Related Metabolic Disorders, 23, 449455.
Ortega-Alonso, A., Pietiläinen, K. H., Silventoinen, K., Saarni, S. E., & Kaprio, J. (2012). Genetic and environmental factors influencing BMI development from adolescence to young adulthood. Behavior Genetics, 42, 7385.
Pang, Z. C., Ning, F., Unger, J., Johnson, C. A., Wang, S. J., Guo, Q., . . . Lee, L. M. (2006). The Qingdao Twin Registry: A focus on chronic disease research. Twin Research and Human Genetics, 9, 758762.
Posthuma, D., Beem, A. L., de Geus, E. J. C., van Baal, G. C. M., von Hjelmborg, J. B., Iachine, I., & Boomsma, D. I. (2003). Theory and practice in quantitative genetics. Twin Research, 6, 361376.
Povel, C. M., Boer, J. M. A., & Feskens, E. J. M. (2011). Shared genetic variance between the features of the metabolic syndrome: Heritability studies. Molecular Genetics and Metabolism, 104, 666669.
Schieken, R. M., Eaves, L. J., Hewitt, J. K., Mosteller, M., Bodurtha, J. N., Moskowitz, W. B., & Nance, W. E. (1989). Univariate genetic analysis of blood pressure in children (the Medical College of Virginia Twin Study). The American Journal of Cardiology, 64, 13331337.
Silventoinen, K., Rokholm, B., Kaprio, J., & Sørensen, T. I. A. (2010). The genetic and environmental influences on childhood obesity: A systematic review of twin and adoption studies. International Journal of Obesity, 34, 2940.
Snieder, H., Harshfield, G. A., & Treiber, F. A. (2003). Heritability of blood pressure and hemodynamics in African- and European-American youth. Hypertension, 41, 11961201.
Srinivasan, S. R., Frerichs, R. R., Webber, L. S., & Berenson, G. S. (1976). Serum lipoprotein profile in children from a biracial community: The Bogalusa Heart Study. Circulation, 54, 309318.
Steinberger, J., & Daniels, S. R. (2003). Obesity, insulin resistance, diabetes, and cardiovascular risk in children: An American Heart Association Scientific Statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation, 107, 14481453.
Sung, J., Lee, K., & Song, Y. M. (2009). Heritabilities of the metabolic syndrome phenotypes and related factors in Korean Twins. The Journal of Clinical Endocrinology and Metabolism, 94, 49464952.
Weinberg, R., Webber, L. S., & Berenson, G. S.(1982). Hereditary and environmental influences on cardiovascular risk factors for children: The Bogalusa Heart Study. American Journal of Epidemiology, 116, 385393.
Wu, T., Snieder, H., Li, L., Cao, W., Zhan, S., Lv, J., . . . Hu, Y. (2011). Genetic and environmental influences on blood pressure and body mass index in Han Chinese: A twin study. Hypertension Research, 34, 173179.
Wu, T., Treiber, F. A., & Snieder, H. (2013). Genetic influence on blood pressure and underlying hemodynamics measured at rest and during stress. Psychosomatic Medicine, 75, 404412.
Yang, H.Y, Li, X. H., Cao, W. H., Lu, J., Wang, T., Zhan, S. Y., . . . Li, L. M. (2002). Chinese National Twin Registry as a resource for genetic epidemiologic studies of common and complex diseases in China. Twin Research, 5, 347351.
Yusuf, S., & Bosch, J. (2002). Urate levels as a predictor of cardiac deaths: Causal relation or mere association? European Heart Journal, 23, 760761.
Zhang, S. C., Liu, X., Yu, Y. X., Hong, X. M., Christoffel, K. K., Wang, B. Y., . . . Tang, G. F. (2009). Genetic and environmental contributions to phenotypic components of metabolic syndrome: a population-based twin study. Obesity, 17, 15811587.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed