Skip to main content Accessibility help
×
Home

Gene–Environment Interactions Between Depressive Symptoms and Smoking Quantity

  • Kaisu Keskitalo-Vuokko (a1), Tellervo Korhonen (a1) (a2) (a3) and Jaakko Kaprio (a1) (a3) (a4)

Abstract

We investigated genetic and environmental correlations and gene by environment interactions (GxE) between depressive symptoms measured by the Beck Depression Inventory (BDI) and quantity smoked measured by number of cigarettes smoked per day (CPD) using quantitative genetic modeling. The population-based sample consisted of 12,063 twin individuals from the Finnish Twin Cohort Study. Bivariate Cholesky decomposition revealed that the phenotypic correlation (r = 0.09) between BDI and CPD was explained by shared genetic (r g = 0.18) and environmental (r e = 0.08) factors. GxE models incorporating moderator effects were built by using CPD as trait and BDI as moderator and vice versa. The importance of the genetic variance component increased with increasing moderator value in both models. Thus, the influence of genetic effects on variance of smoking quantity was enhanced in individuals with elevated depression score and vice versa; the genetic effects on depression variance were potentiated among heavy smokers. In conclusion, shared genetic and environmental factors as well as GxE underlie the association of smoking with depression.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Gene–Environment Interactions Between Depressive Symptoms and Smoking Quantity
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Gene–Environment Interactions Between Depressive Symptoms and Smoking Quantity
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Gene–Environment Interactions Between Depressive Symptoms and Smoking Quantity
      Available formats
      ×

Copyright

Corresponding author

Address for correspondence: Kaisu Keskitalo-Vuokko, Department of Public Health, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland. E-mail: kaisu.vuokko@iki.fi

References

Hide All
Agrawal, A., Heath, A. C., Grant, J. D., Pergadia, M. L., Statham, D. J., Bucholz, K. K., . . . Madden, P. A. (2006). Assortative mating for cigarette smoking and for alcohol consumption in female Australian twins and their spouses. Behavior Genetics, 36, 553566.
Audrain-McGovern, J., Lerman, C., Wileyto, E. P., Rodriguez, D., & Shields, P. G. (2004). Interacting effects of genetic predisposition and depression on adolescent smoking progression. The American Journal of Psychiatry, 161, 12241230.
Beck, A. T., & Beamesderfer, A. (1974). Assessment of depression: The depression inventory. Modern Problems of Pharmacopsychiatry, 7, 151169.
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, H. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.
Breslau, N., Novak, S. P., & Kessler, R. C. (2004). Psychiatric disorders and stages of smoking. Biological Psychiatry, 55, 6976.
Breslau, N., Peterson, E. L., Schultz, L. R., Chilcoat, H. D., & Andreski, P. (1998). Major depression and stages of smoking. A longitudinal investigation. Archives of General Psychiatry, 55, 161166.
Dani, J. A., & Harris, R. A. (2005). Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nature Neuroscience, 8, 14651470.
Dome, P., Lazary, J., Kalapos, M. P., & Rihmer, Z. (2010). Smoking, nicotine and neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 34, 295342.
Edwards, A. C., & Kendler, K. S. (2012). A twin study of depression and nicotine dependence: Shared liability or causal relationship? Journal of Affective Disorders, 142, 9097.
Edwards, A. C., Maes, H. H., Pendersen, N. L., & Kendler, K. S. (2011) A population-based twin study of the genetic and environmental relationship of major depression, regular tobacco use and nicotine dependence. Psychological Medicine, 41, 395405.
Fergusson, D. M., Goodwin, R. D., & Horwood, L. J. (2003). Major depression and cigarette smoking: Results of a 21-year longitudinal study. Psychological Medicine, 33, 13571367.
Fu, Q., Heath, A. C., Bucholz, K. K., Lyons, M. J., Tsuang, M. T., True, W. R., & Eisen, S. A. (2007). Common genetic risk of major depression and nicotine dependence: The contribution of antisocial traits in a United States Veteran male twin cohort. Twin Research and Human Genetics, 10, 470478.
Goldberg, D. (2006). The aetiology of depression. Psychological Medicine, 36, 13411347.
Goodman, E., & Capitman, J. (2000). Depressive symptoms and cigarette smoking among teens. Pediatrics, 106, 748755.
Jane-Llopis, E., & Matytsina, I. (2006). Mental health and alcohol, drugs and tobacco: A review of the comorbidity between mental disorders and the use of alcohol, tobacco and illicit drugs. Drug and Alcohol Review, 25, 515536.
Kaprio, J., & Koskenvuo, M. (2002). Genetic and environmental factors in complex diseases: The older finnish twin cohort. Twin Research, 5, 358365.
Kendler, K. S., Neale, M. C., MacLean, C. J., Heath, A. C., Eaves, L. J., & Kessler, R. C. (1993). Smoking and major depression. A causal analysis. Archives of General Psychiatry, 50, 3643.
Klungsoyr, O., Nygard, J. F., Sorensen, T., & Sandanger, I. (2006). Cigarette smoking and incidence of first depressive episode: An 11-year, population-based follow-up study. American Journal of Epidemiology, 163, 421432.
Korhonen, T., Broms, U., Varjonen, J., Romanov, K., Koskenvuo, M., Kinnunen, T., & Kaprio, J. (2007). Smoking behaviour as a predictor of depression among Finnish men and women: A prospective cohort study of adult twins. Psychological Medicine, 37, 705715.
Lasa, L., Ayuso-Mateos, J. L., Vazquez-Barquero, J. L., Diez-Manrique, F. J., & Dowrick, C. F. (2000). The use of the beck depression inventory to screen for depression in the general population: A preliminary analysis. Journal of Affective Disorders, 57, 261265.
Lasser, K., Boyd, J. W., Woolhandler, S., Himmelstein, D. U., McCormick, D., & Bor, D. H. (2000). Smoking and mental illness: A population-based prevalence study. JAMA, 284, 26062610.
Lerman, C., Caporaso, N., Main, D., Audrain, J., Boyd, N. R., Bowman, E. D., & Shields, P. G. (1998). Depression and self-medication with nicotine: The modifying influence of the dopamine D4 receptor gene. Health Psychology, 17, 5662.
Lyons, M., Hitsman, B., Xian, H., Panizzon, M. S., Jerskey, B. A., Santangelo, S., . . . Tsuang, M. T. (2008). A twin study of smoking, nicotine dependence, and major depression in men. Nicotine and Tobacco Research, 10, 97108.
McCaffery, J. M., Niaura, R., Swan, G. E., & Carmelli, D. (2003). A study of depressive symptoms and smoking behavior in adult male twins from the NHLBI twin study. Nicotine & Tobacco Research, 5, 7783.
Morrell, H. E. R., & Cohen, L. M. (2006). Cigarette smoking, anxiety and depression. Journal of Psychopathology and Behavioral Assessment, 28, 283297.
Murphy, J. M., Horton, N. J., Monson, R. R., Laird, N. M., Sobol, A. M., & Leighton, A. H. (2003). Cigarette smoking in relation to depression: Historical trends from the Stirling County Study. The American Journal of Psychiatry, 160, 16631669.
Neale, M. C., & Maes, H. H. M. (2006). Methodology for genetic studies of twins and families. Dordrecht, the Netherlands: Kluwer Academic Publishers.
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2006). Mx: Statistical modeling (6th ed.). Richmond, VA: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Department of Psychiatry.
Nolen-Hoeksema, S. (2007). Assessing and diagnosing abnormality. Abnormal psychology (4th ed., pp. 99130). New York, NY: Mc Graw Hill.
Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5, 554571.
Rose, R. J., Broms, U., Korhonen, T., Dick, D. M., & Kaprio, J. (2009). Genetics of smoking behavior. In Kim, Y. K. (Ed.), Handbook of behavior genetics (pp. 411432). New York: Springer.
Royal College of Physicians; Royal College of Psychiatrists. (2013). Smoking and mental health. London: Lavenham Press.
Sarna, S., Kaprio, J., Sistonen, P., & Koskenvuo, M. (1978). Diagnosis of twin zygosity by mailed questionnaire. Human Heredity, 28, 241254.
Taylor, G., McNeill, A., Girling, A., Farley, A., Lindson-Hawley, N., & Aveyard, P. (2014). Change in mental health after smoking cessation: Systematic review and meta-analysis. BMJ: British Medical Journal, 348, g1151.
Tjora, T., Hetland, J., Aarø, L. E., Wold, B., Wiium, N., & Øverland, S. (2014).The association between smoking and depression from adolescence to adulthood. Addiction, 109, 10221130.
van der Sluis, S., Posthuma, D., & Dolan, C. V. (2012). A note on false positives and power in G x E modelling of twin data. Behavior Genetics, 42, 170186.
Van Hulle, C. A., & Rathouz, P. J. (2015). Operating characteristics of statistical methods for detecting gene-by-measured environment interaction in the presence of gene-environment correlation under violations of distributional assumptions. Twin Research and Human Genetics, 18, 1927.
Varjonen, J., Romanov, K., Kaprio, J., Heikkilä, K., & Koskenvuo, M. (1997). Self-rated depression in 12,063 middle-aged adults. Nordic Journal of Psychiatry, 51, 331338.
Williams, J. M., & Ziedonis, D. (2004). Addressing tobacco among individuals with a mental illness or an addiction. Addictive Behaviors, 29, 10671083.
Windle, M., & Windle, R. C. (2001). Depressive symptoms and cigarette smoking among middle adolescents: Prospective associations and intrapersonal and interpersonal influences. Journal of Consulting and Clinical Psychology, 69, 215226.
World Health Organization. (2004). Neuroscience of psychoactive substance use and dependence. Geneva: World Health Organization.
World Health Organization. (2009). Global health risks. Mortality and burden of disease attributable to selected major risks. Geneva: Author.
Wu, L. T., & Anthony, J. C. (1999). Tobacco smoking and depressed mood in late childhood and early adolescence. American Journal of Public Health, 89, 18371840.
Zheng, H., Van Hulle, C. A., & Rathouz, P. J. (2015). Comparing alternative biometric models with and without gene-by-measured environment interaction in behavior genetic designs: Statistical operating characteristics. Behavior Genetics, 45, 480491.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed