Skip to main content Accessibility help

Familial Resemblance for Serum Metabolite Concentrations

  • Harmen H. M. Draisma (a1) (a2), Marian Beekman (a3) (a4), René Pool (a1) (a2), Gert-Jan B. van Ommen (a5), Anika A. M. Vaarhorst (a3), Anton J. M. de Craen (a6), Gonneke Willemsen (a1), P. Eline Slagboom (a3) (a4) and Dorret I. Boomsma (a1) (a2)...


Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of familial resemblance for the concentrations in human serum of more than 100 metabolites, measured using a targeted metabolomics platform. Age- and sex-corrected monozygotic twin correlations, midparent–offspring regression coefficients, and spouse correlations in subjects from two independent cohorts (Netherlands Twin Register and Leiden Longevity Study) were estimated for each metabolite. In the Netherlands Twin Register subjects, who were largely fasting, we found significant monozygotic twin correlations for 121 out of 123 metabolites. Heritability was confirmed by midparent–offspring regression. For most detected metabolites, the correlations between spouses were considerably lower than those between twins, indicating a contribution of genetic effects to familial resemblance. Remarkably high heritability was observed for free carnitine (monozygotic twin correlation 0.66), for the amino acids serine (monozygotic twin correlation 0.77) and threonine (monozygotic twin correlation 0.64), and for phosphatidylcholine acyl-alkyl C40:3 (monozygotic twin correlation 0.77). For octenoylcarnitine, a consistent point estimate of approximately 0.50 was found for the spouse correlations in the two cohorts as well as for the monozygotic twin correlation, suggesting that familiality for this metabolite is explained by shared environment. We conclude that for the majority of metabolites targeted by the used metabolomics platform, the familial resemblance of serum concentrations is largely genetic. Our results contribute to the knowledge of the heritability of fasting serum metabolite concentrations, which is relevant for biomarker research.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Familial Resemblance for Serum Metabolite Concentrations
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Familial Resemblance for Serum Metabolite Concentrations
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Familial Resemblance for Serum Metabolite Concentrations
      Available formats


Corresponding author

address for correspondence: Harmen Draisma, Department of Biological Psychology, Faculty of Psychology and Education, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands. E-mail:


Hide All
Alul, F. Y., Cook, D. E., Shchelochkov, O. A., Fleener, L. G., Berberich, S. L., Murray, J. C., & Ryckman, K. K. (2013). The heritability of metabolic profiles in newborn twins. Heredity, 110, 253258.
Berg, J. M., Tymoczko, J. L., Stryer, L., & Gatto, G. J. Jr. (2012). Biochemistry. New York: Palgrave Macmillan.
Di Castelnuovo, A., Quacquaruccio, G., Donati, M. B., de Gaetano, G., & Iacoviello, L. (2009). Spousal concordance for major coronary risk factors: A systematic review and meta-analysis. American Journal of Epidemiology, 169, 18.
Draisma, H. H. M. (2011). Analysis of metabolomics data from twin families. Leiden: Leiden University.
Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387426.
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed., pp. 160183). Harlow, England: Pearson Education.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 11491160.
Floegel, A., Stefan, N., Yu, Z., Mühlenbruch, K., Drogan, D., Joost, H.-G., . . . Pischon, T. (2013). Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 62, 639648.
Gieger, C., Geistlinger, L., Altmaier, E., Hrabé de Angelis, M., Kronenberg, F., Meitinger, T., . . . Suhre, K. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genetics, 4, e1000282.
Goek, O.-N., Döring, A., Gieger, C., Heier, M., Koenig, W., Prehn, C., . . . Meisinger, C. (2012). Serum metabolite concentrations and decreased GFR in the general population. American Journal of Kidney Diseases, 60, 197206.
Griffiths, W. J., Koal, T., Wang, Y., Kohl, M., Enot, D. P., & Deigner, H. P. (2010). Targeted metabolomics for biomarker discovery. Angewandte Chemie International Edition, 49, 54265445.
He, Y., Yu, Z., Giegling, I., Xie, L., Hartmann, A. M., Prehn, C., . . . Rujescu, D. (2012). Schizophrenia shows a unique metabolomics signature in plasma. Translational Psychiatry, 2, e149.
Illig, T., Gieger, C., Zhai, G., Römisch-Margl, W., Wang-Sattler, R., Prehn, C., . . . Suhre, K. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137141.
Jourdan, C., Petersen, A.-K., Gieger, C., Döring, A., Illig, T., Wang-Sattler, R., . . . Linseisen, J. (2012). Body fat free mass is associated with the serum metabolite profile in a population-based study. PLoS ONE, 7, e40009.
Kettunen, J., Tukiainen, T., Sarin, A.-P., Ortega-Alonso, A., Tikkanen, E., Lyytikäinen, L.-P., . . . Ripatti, S. (2012). Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genetics, 44, 269276.
Knoblauch, H., Busjahn, A., Münter, S., Nagy, Z., Faulhaber, H. D., Schuster, H., & Luft, F. C. (1997). Heritability analysis of lipids and three gene loci in twins link the macrophage scavenger receptor to HDL cholesterol concentrations. Arteriosclerosis, Thrombosis and Vascular Biology, 17, 20542060.
Krug, S., Kastenmüller, G., Stückler, F., Rist, M. J., Skurk, T., Sailer, M., . . . Daniel, H. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 26, 26072619.
Li, J., & Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity, 95, 221227.
Menni, C., Zhai, G., Macgregor, A., Prehn, C., Römisch-Margl, W., Suhre, K., . . . Valdes, A. M. (2013). Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics, 9, 506514.
Mittelstrass, K., Ried, J. S., Yu, Z., Krumsiek, J., Gieger, C., Prehn, C., . . . Illig, T. (2011). Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genetics, 7, e1002215.
Nicholson, G., Rantalainen, M., Maher, A. D., Li, J. V., Malmodin, D., Ahmadi, K. R., . . . Holmes, C. C. (2011). Human metabolic profiles are stably controlled by genetic and environmental variation. Molecular Systems Biology, 7, 525.
Posthuma, D., & Boomsma, D. I. (2000). A note on the statistical power in extended twin designs. Behavior Genetics, 30, 147158.
R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
Robinson, H. F., Comstock, R. E., & Harvey, P. H. (1949). Genotypic and phenotypic correlation in corn and their implications in selection. Agronomy Journal, 43, 282287.
Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2012). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 8, 133142.
Schoenmaker, M., de Craen, A. J. M., de Meijer, P. H. E. M., Beekman, M., Blauw, G. J., Slagboom, P. E., & Westendorp, R. G. J. (2006). Evidence of genetic enrichment for exceptional survival using a family approach: The Leiden Longevity Study. European Journal of Human Genetics, 14, 7984.
Shah, S. H., Hauser, E. R., Bain, J. R., Muehlbauer, M. J., Haynes, C., Stevens, R. D., . . . Kraus, W. E. (2009). High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Molecular Systems Biology, 5, 258.
Snieder, H., van Doornen, L. J., & Boomsma, D. I. (1999). Dissecting the genetic architecture of lipids, lipoproteins, and apolipoproteins: Lessons from twin studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 28262834.
Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45, 167.
Van Dongen, J., Slagboom, P., Draisma, H. H. M., Martin, N., & Boomsma, D. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13, 640653.
Van Grootheest, D. S., van den Berg, S. M., Cath, D. C., Willemsen, G., & Boomsma, D. I. (2008). Marital resemblance for obsessive–compulsive, anxious and depressive symptoms in a population-based sample. Psychological Medicine, 38, 17311740.
Vance, D. E., & Vance, J. E. (2008). Biochemistry of lipids, lipoproteins and membranes (5th ed.). Amsterdam: Elsevier.
Wang-Sattler, R., Yu, Z., Herder, C., Messias, A. C., Floegel, A., He, Y., . . . Illig, T. (2012). Novel biomarkers for pre-diabetes identified by metabolomics. Molecular Systems Biology, 8, 615.
Westendorp, R. G. J., van Heemst, D., Rozing, M. P., Frölich, M., Mooijaart, S. P., Blauw, G.-J., . . . Leiden Longevity Study Group. (2009). Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study. Journal of the American Geriatrics Society, 57, 16341637.
Willemsen, G., de Geus, E. J., Bartels, M., van Beijsterveldt, C. E., Brooks, A. I., Estourgie-Van Burk, G. F., . . . Boomsma, D. I. (2010). The Netherlands Twin Register biobank: A resource for genetic epidemiological studies. Twin Research and Human Genetics, 13, 231245.
Willemsen, G., Vink, J. M., Abdellaoui, A., den Braber, A., van Beek, J. H. D. A., Draisma, H. H. M., . . . Boomsma, D. I. (2013). The Adult Netherlands Twin Register: Twenty-five years of survey and biological data collection. Twin Research and Human Genetics, 16, 271281.
Wu, R., Huang, Y. H., Elinder, L. S., & Frostegård, J. (1998). Lysophosphatidylcholine is involved in the antigenicity of oxidized LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 626630.
Xu, T., Holzapfel, C., Dong, X., Bader, E., Yu, Z., Prehn, C., . . . Wang-Sattler, R. (2013). Effects of smoking and smoking cessation on human serum metabolite profile: Results from the KORA cohort study. BMC Medicine, 11, 60.
Yu, Z., Zhai, G., Singmann, P., He, Y., Xu, T., Prehn, C., . . . Wang-Sattler, R. (2012). Human serum metabolic profiles are age dependent. Aging Cell, 11, 960967.
Zhai, G., Wang-Sattler, R., Hart, D. J., Arden, N. K., Hakim, A. J., Illig, T., & Spector, T. D. (2010). Serum branched-chain amino acid to histidine ratio: A novel metabolomic biomarker of knee osteoarthritis. Annals of the Rheumatic Diseases, 69, 12271231.


Type Description Title
Supplementary materials

Draisma Supplementary Material

 Unknown (79 KB)
79 KB

Familial Resemblance for Serum Metabolite Concentrations

  • Harmen H. M. Draisma (a1) (a2), Marian Beekman (a3) (a4), René Pool (a1) (a2), Gert-Jan B. van Ommen (a5), Anika A. M. Vaarhorst (a3), Anton J. M. de Craen (a6), Gonneke Willemsen (a1), P. Eline Slagboom (a3) (a4) and Dorret I. Boomsma (a1) (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed