Skip to main content Accessibility help
×
Home

Comparing Factor, Class, and Mixture Models of Cannabis Initiation and DSM Cannabis Use Disorder Criteria, Including Craving, in the Brisbane Longitudinal Twin Study

  • Thomas S. Kubarych (a1), Kenneth S. Kendler (a1) (a2), Steven H. Aggen (a1), Ryne Estabrook (a1), Alexis C. Edwards (a1), Shaunna L. Clark (a3), Nicholas G. Martin (a4), Ian B. Hickie (a5), Michael C. Neale (a1) (a2) and Nathan A. Gillespie (a1) (a4)...

Abstract

Accumulating evidence suggests that the Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnostic criteria for cannabis abuse and dependence are best represented by a single underlying factor. However, it remains possible that models with additional factors, or latent class models or hybrid models, may better explain the data. Using structured interviews, 626 adult male and female twins provided complete data on symptoms of cannabis abuse and dependence, plus a craving criterion. We compared latent factor analysis, latent class analysis, and factor mixture modeling using normal theory marginal maximum likelihood for ordinal data. Our aim was to derive a parsimonious, best-fitting cannabis use disorder (CUD) phenotype based on DSM-IV criteria and determine whether DSM-5 craving loads onto a general factor. When compared with latent class and mixture models, factor models provided a better fit to the data. When conditioned on initiation and cannabis use, the association between criteria for abuse, dependence, withdrawal, and craving were best explained by two correlated latent factors for males and females: a general risk factor to CUD and a factor capturing the symptoms of social and occupational impairment as a consequence of frequent use. Secondary analyses revealed a modest increase in the prevalence of DSM-5 CUD compared with DSM-IV cannabis abuse or dependence. It is concluded that, in addition to a general factor with loadings on cannabis use and symptoms of abuse, dependence, withdrawal, and craving, a second clinically relevant factor defined by features of social and occupational impairment was also found for frequent cannabis use.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparing Factor, Class, and Mixture Models of Cannabis Initiation and DSM Cannabis Use Disorder Criteria, Including Craving, in the Brisbane Longitudinal Twin Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparing Factor, Class, and Mixture Models of Cannabis Initiation and DSM Cannabis Use Disorder Criteria, Including Craving, in the Brisbane Longitudinal Twin Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparing Factor, Class, and Mixture Models of Cannabis Initiation and DSM Cannabis Use Disorder Criteria, Including Craving, in the Brisbane Longitudinal Twin Study
      Available formats
      ×

Copyright

Corresponding author

address for correspondence: Thomas S. Kubarych, Department of Psychiatry, Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 East Leigh Street, Biotech 1, Suite 1-127, Richmond VA 23219-1534, USA. E-mail: tkubarych@gmail.com

References

Hide All
Agrawal, A., Heath, A. C., & Lynskey, M. T. (2011). DSM-IV to DSM-5: The impact of proposed revisions on diagnosis of alcohol use disorders. Addiction, 106, 19351943.
Agrawal, A., & Lynskey, M. T. (2007). Does gender contribute to heterogeneity in criteria for cannabis abuse and dependence? Results from the National Epidemiological Survey on Alcohol and Related Conditions. Drug and Alcohol Dependence, 88, 300307.
Ahmed, S. H. (2012). The science of making drug-addicted animals. Neuroscience, 211, 107125.
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317332.
American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: Author.
American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders: DSM-III-R (3rd Revised ed.). Washington, DC: Author.
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders: DSM-IV (4th ed.). Washington, DC: Author.
Baillie, A. J., & Teesson, M. (2010). Continuous, categorical and mixture models of DSM-IV alcohol and cannabis use disorders in the Australian community. Addiction, 105, 12461253.
Barron, A. R., & Cover, T. M. (1991). Minimum complexity density estimation. IEEE Transactions on Information Theory, 1, 10341054.
Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 329.
Beseler, C. L., Taylor, L. A., & Leeman, R. F. (2010). An item-response theory analysis of DSM-IV alcohol-use disorder criteria and ‘binge’ drinking in undergraduates. Journal of Studies on Alcohol and Drugs, 71, 418423.
Bock, R. D., & Aitken, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of the EM algorithm. Psychometrika, 46, 443460.
Bond, J., Ye, Y., Cherpitel, C. J., Borges, G., Cremonte, M., Moskalewicz, J., & Swiatkiewicz, G. (2012). Scaling properties of the combined ICD-10 dependence and harms criteria and comparisons with DSM-5 alcohol use disorder criteria among patients in the emergency department. Journal of Studies on Alcohol and Drugs, 73 (2), 328336.
Borges, G., Ye, Y., Bond, J., Cherpitel, C. J., Cremonte, M., Moskalewicz, J., . . . Rubio-Stipec, M. (2010). The dimensionality of alcohol use disorders and alcohol consumption in a cross-national perspective. Addiction, 105, 240254.
Cherpitel, C. J., Borges, G., Ye, Y., Bond, J., Cremonte, M., Moskalewicz, J., & Swiatkiewicz, G. (2010). Performance of a craving criterion in DSM alcohol use disorders. Journal of Studies on Alcohol and Drugs, 71 (5), 674684.
Clark, S., Muthen, B. O., Kaprio, J., D'Onofrio, B., Vike, R., & Rose, R. (2014). Models and strategies for factor mixture analysis: An example concerning the structure underlying psychological disorders. Structural Equation Modeling, 20, 681703.
Compton, W. M., Saha, T. D., Conway, K. P., & Grant, B. F. (2009). The role of cannabis use within a dimensional approach to cannabis use disorders. Drug and Alcohol Dependence, 100, 221227.
Crabbe, J. C., Metten, P., Cameron, A. J., & Wahlsten, D. (2005). An analysis of the genetics of alcohol intoxication in inbred mice. Neuroscience & Biobehavioral Reviews, 28, 785802.
Crabbe, J. C., Phillips, T. J., Buck, K. J., Cunningham, C. L., & Belknap, J. K. (1999). Identifying genes for alcohol and drug sensitivity: Recent progress and future directions. Trends in Neurosciences, 22, 173179.
Dennis, M., Babor, T. F., Roebuck, M. C., & Donaldson, J. (2002). Changing the focus: The case for recognizing and treating cannabis use disorders. Addiction, 97(Suppl. 1), 415.
Dolan, C. V., & Maas, H. L. J. v. d. (1998). Fitting multivariate normal finite mixtures subject to structural equation modeling. Psychometrika, 63, 227253.
Edwards, G., Arif, A., & Hadgson, R. (1981). Nomenclature and classification of drug- and alcohol-related problems: A WHO memorandum. Bulletin of the World Health Organization, 59, 225242.
Edwards, A. C., Gillespie, N. A., Aggen, S. H., & Kendler, K. S. (2013). Assessment of a modified DSM-5 diagnosis of alcohol use disorder in a genetically informative population. Alcoholism, Clinical and Experimental Research, 37, 443451.
Everitt, B. S. (1988). A finite mixture model for the clustering of mixed-mode data. Statistics & Probability Letters, 6, 305309.
Feingold, A., & Rounsaville, B. (1995a). Construct validity of the abuse-dependence distinction as measured by DSM-IV criteria for different psychoactive substances. Drug and Alcohol Dependence, 39 (2), 99109.
Feingold, A., & Rounsaville, B. (1995b). Construct validity of the dependence syndrome as measure by DSM-IV for different psychoactive substances. Addiction, 90, 16611669.
Gillespie, N. A., Henders, A. K., Davenport, T. A., Hermens, D. F., Wright, M. J., Martin, N. G., & Hickie, I. B. (2012). The Brisbane Longitudinal Twin Study: Pathways to cannabis use, abuse, and dependence project-current status, preliminary results, and future directions. Twin Research and Human Genetics, 16 (1), 2133.
Gillespie, N. A., Kendler, K. S., & Neale, M. C. (2011a). Psychometric modeling of cannabis initiation and use and the symptoms of cannabis abuse, dependence and withdrawal in a sample of male and female twins. Drug and Alcohol Dependence, 118, 166172.
Gillespie, N. A., Kendler, K. S., & Neale, M. C. (2011b). Psychometric modeling of initiation and use and the symptoms of cannabis abuse, dependence and withdrawl in a sample of male and female twins. Drug and Alcohol Dependence, 118, 166172.
Gillespie, N. A., & Neale, M. C. (2006). A finite mixture model for genotype and environment interactions: Detecting latent population heterogeneity. Twin Research and Human Genetics, 9, 412423.
Gillespie, N. A., Neale, M. C., Legrand, L. N., Iacono, W. G., & McGue, M. (2012). Are the symptoms of cannabis use disorder best accounted for by dimensional, categorical, or factor mixture models? A comparison of male and female young adults. Psychology of Addictive Behaviors, 26, 6877.
Gillespie, N. A., Neale, M. C., Prescott, C. A., Aggen, S. H., & Kendler, K. S. (2007). Factor and item-response analysis DSM-IV criteria for abuse of and dependence on cannabis, cocaine, hallucinogens, sedatives, stimulants and opioids. Addiction, 102, 920930.
Glockner-Rist, A., Lemenager, T., & Mann, K. (2013). Reward and relief craving tendencies in patients with alcohol use disorders: Results from the PREDICT study. Addictive Behaviors, 38, 15321540.
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231.
Hall, W., Johnston, L., & Donnelly, N. (1999). The epidemiology of cannabis use and its consequences. In Kalant, H., Corrigal, W., Hall, W. & Smart, R. (Eds.), The health effects of cannabis (pp. 69125). Toronto, Canada: Addiction Research Foundation.
Hartman, C. A., Gelhorn, H., Crowley, T. J., Sakai, J. T., Stallings, M., Young, S. E., . . . Hopfer, C. J. (2008). Item response theory analysis of DSM-IV cannabis abuse and dependence criteria in adolescents. Journal of the American Academy of Child and Adolescent Psychiatry 47, 165173.
Hasin, D. S., Fenton, M. C., Beseler, C., Park, J. Y., & Wall, M. M. (2012). Analyses related to the development of DSM-5 criteria for substance use related disorders: 2. Proposed DSM-5 criteria for alcohol, cannabis, cocaine and heroin disorders in 663 substance abuse patients. Drug and Alcohol Dependence, 122, 2837.
Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11, 3653.
Jedidi, K., Jagpal, H. S., & Desarbo, W. S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 3959.
Kendler, K. S., Aggen, S. H., Prescott, C. A., Crabbe, J., & Neale, M. C. (2012). Evidence for multiple genetic factors underlying the DSM-IV criteria for alcohol dependence. Molecular Psychiatry, 17, 13061315.
Keyes, K. M., Krueger, R. F., Grant, B. F., & Hasin, D. S. (2011). Alcohol craving and the dimensionality of alcohol disorders. Psychological Medicine, 41, 629640.
Kubarych, T. S., Aggen, S. H., Hettema, J. M., Kendler, K. S., & Neale, M. C. (2005). Endorsement frequencies and factor structure of DSM-III-R and DSM-IV generalized anxiety disorder symptoms in women: Implications for future research, classification, treatment and comorbidity. International Journal of Methods in Psychiatric Research, 14 (2), 6981.
Langenbucher, J. W., Labouvie, E., Martin, C. S., Sanjuan, P. M., Bavly, L., Kirisci, L., & Chung, T. (2004). An application of item response theory analysis to alcohol, cannabis, and cocaine criteria in DSM-IV. Journal of Abnormal Psychology, 113, 7280.
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin.
Leoutsakos, J. M., Zandi, P. P., Bandeen-Roche, K., & Lyketsos, C. G. (2010). Searching for valid psychiatric phenotypes: Discrete latent variable models. International Journal of Methods in Psychiatric Research, 19, 6373.
Lynskey, M. T., & Agrawal, A. (2007). Psychometric properties of DSM assessments of illicit drug abuse and dependence: results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Psychological Medicine, 37, 13451355.
Markon, K. E., & Krueger, R. F. (2004, October). A modeling approach to distinguishing between discrete and continuous forms of psychopathology. Paper presented at the 19th Annual Meeting of the Society for Research in Psychopathology, St Louis, MO.
Markon, K. E., & Krueger, R. F. (2005). Categorical and continuous models of liability to externalizing disorders: A direct comparison in NESARC. Archives of General Psychiatry, 62, 13521359.
McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York, NY: Wiley.
Mewton, L., Slade, T., McBride, O., Grove, R., & Teesson, M. (2011). An evaluation of the proposed DSM-5 alcohol use disorder criteria using Australian national data. Addiction, 106, 941950.
Mewton, L., Slade, T., & Teeson, M. (2013). An evaluation of the proposed DSM-5 cannabis use disorder criteria using Australian national survey data. Journal of Studies on Alcohol and Drugs, 74, 614621.
Muthen, B. (2006). Should substance use disorders be considered as categorical or dimensional? Addiction, 101(Suppl. 1), 616.
Muthen, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463469.
Neale, M. C., Aggen, S. H., Maes, H. H., Kubarych, T. S., & Schmitt, J. E. (2006). Methodological issues in the assessment of substance use phenotypes. Addictive Behaviors, 31, 10101034.
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2006). Mx: Statistical modeling (7th ed.). Richmond, VA: Department of Psychiatry, Medical College of Virginia.
Nelson, C. B., Rehm, J., Ustun, T. B., Grant, B., & Chatterji, S. (1999). Factor structures for DSM-IV substance disorder criteria endorsed by alcohol, cannabis, cocaine and opiate users: Results from the WHO reliability and validity study. Addiction, 94, 843855.
Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling. A Monte Carlo simulation study. Structural Equation Modeling, 14, 535569.
Russo, S. J., Murrough, J. W., Han, M. H., Charney, D. S., & Nestler, E. J. (2012). Neurobiology of resilience. Nature Neuroscience, 15, 14751484.
Saha, T. D., Chou, S. P., & Grant, B. F. (2006). Toward an alcohol use disorder continuum using item response theory: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychological Medicine, 36, 931941.
SAS. (2011). SAS/STAT® 9.3 user's guide. Cary, NC: SAS Institute.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.
Spearman, C. (1904). General intelligence, objectively determined and measured. American Journal of Psychology, 4, 201293.
Steiger, J. (1985). On the multivariate asymptotic distribution of sequential chi-square tests. Psychometrika, 50, 253264.
Stinson, F. S., Grant, B. F., Dawson, D. A., Ruan, W. J., Huang, B., & Saha, T. (2005). Comorbidity between DSM-IV alcohol and specific drug use disorders in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Drug and Alcohol Dependence, 80, 105116.
Takane, Y., & Leeuw, J. D. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408.
Teesson, M., Lynskey, M., Manor, B., & Baillie, A. (2002). The structure of cannabis dependence in the community. Drug and Alcohol Dependence, 68, 255262.
Vereshchagin, N. K., & Vitanyi, P. M. B. (2004). Kolmogorov's structure functions and model selection. IEEE Transactions on Information Theory, 50, 32653290.
Verweij, K. J., Zietsch, B. P., Lynskey, M. T., Medland, S. E., Neale, M. C., Martin, N. G., . . . Vink, J. M. (2010). Genetic and environmental influences on cannabis use initiation and problematic use: A meta-analysis of twin studies. Addiction, 105, 417430.
von Sydow, K., Lieb, R., Pfister, H., Hofler, M., Sonntag, H., & Wittchen, H. U. (2001). The natural course of cannabis use, abuse and dependence over four years: A longitudinal community study of adolescents and young adults. Drug and Alcohol Dependence, 64, 347361.
Wright, M. J., & Martin, N. G. (2004). The Brisbane Adolescent Twin Study: Outline of study methods and research projects. Australian Journal of Psychology, 56, 6578.
Yung, Y. F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297330.

Keywords

Related content

Powered by UNSILO

Comparing Factor, Class, and Mixture Models of Cannabis Initiation and DSM Cannabis Use Disorder Criteria, Including Craving, in the Brisbane Longitudinal Twin Study

  • Thomas S. Kubarych (a1), Kenneth S. Kendler (a1) (a2), Steven H. Aggen (a1), Ryne Estabrook (a1), Alexis C. Edwards (a1), Shaunna L. Clark (a3), Nicholas G. Martin (a4), Ian B. Hickie (a5), Michael C. Neale (a1) (a2) and Nathan A. Gillespie (a1) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.