Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-k7f5t Total loading time: 0.303 Render date: 2022-01-27T06:49:43.670Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Associations of Obesity Measurements with Serum Metabolomic Profile: A Chinese Twin Study

Published online by Cambridge University Press:  26 April 2021

Chunxiao Liao
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Biqi Wang
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Wenjing Gao*
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Weihua Cao
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Jun Lv
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Canqing Yu
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Tao Huang
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Dianjianyi Sun
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Shengfeng Wang
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
Zengchang Pang
Affiliation:
Qingdao Center for Diseases Control and Prevention, Qingdao, China
Liming Cong
Affiliation:
Zhejiang Center for Disease Control and Prevention, Hangzhou, China
Hua Wang
Affiliation:
Jiangsu Center for Disease Control and Prevention, Nanjing, China
Xianping Wu
Affiliation:
Sichuan Center for Disease Control and Prevention, Chengdu, China
Liming Li*
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
*
Author for correspondence: Wenjing Gao, Email: wenjinggao@bjmu.edu.cn; Liming Li, Email: lmlee@vip.163.com
Author for correspondence: Wenjing Gao, Email: wenjinggao@bjmu.edu.cn; Liming Li, Email: lmlee@vip.163.com
Get access

Abstract

The objective of this study was to investigate how different obesity measures link to circulating metabolites, and whether the connections are due to genetic or environmental factors. A cross-sectional analysis was performed on follow-up survey data at the Chinese National Twin Registry (CNTR), which was conducted in four areas of China (Shandong, Jiangsu, Zhejiang and Sichuan) in 2013. The survey collected detailed questionnaire information and conducted physical examinations, fasting blood sampling and untargeted metabolomic measurements among 439 adult twins. Linear regression models and bioinformatics analysis were used to examine the relation of obesity measures, including body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) with serum metabolite levels and related pathways. A co-twin control study was additionally conducted among 15 obesity-discordant monozygotic (MZ) pairs (intrapair BMI difference >3 kg/m2) to examine any differences in metabolites controlling for genetic factors. Eleven metabolites were associated with BMI, WC and WHR after controlling for genetic and shared environmental factors. Pathway analysis identified pathways such as phenylalanine metabolism, purine metabolism, valine, leucine and isoleucine biosynthesis that were associated with obesity. A wide range of unfavorable alterations in the serum metabolome was associated with obesity. Obesity-discordant twin analysis suggests that these associations are independent of genetic liability.

Type
Articles
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Liming Li and Wenjing Gao are the co-corresponding authors.

References

Bogl, L. H., Kaye, S. M., Ramo, J. T., Kangas, A. J., Soininen, P., Hakkarainen, A., … Pietilainen, K. H. (2016). Abdominal obesity and circulating metabolites: A twin study approach. Metabolism – Clinical And Experimental, 65, 111121.CrossRefGoogle ScholarPubMed
Carlin, J. B., Gurrin, L. C., Sterne, J. A., Morley, R., & Dwyer, T. (2005). Regression models for twin studies: A critical review. International Journal of Epidemiology, 34, 10891099.CrossRefGoogle ScholarPubMed
Chashmniam, S., Hashemi, M. N., Nobakht, M. G. B., Safari-Alighiarloo, N., & Khamseh, M. E. (2020). The metabolome profiling of obese and non-obese individuals: Metabolically healthy obese and unhealthy non-obese paradox. Iranian Journal of Basic Medical Sciences, 23, 186194.Google ScholarPubMed
Choi, S., & Snider, A. J. (2015). Sphingolipids in high fat diet and obesity-related diseases. Mediators of Inflammation, 2015, 520618.CrossRefGoogle ScholarPubMed
Da, S. A., Do, C. J., Li, X., Wang, Z., Mouton, A. J., & Hall, J. E. (2020). Role of hyperinsulinemia and insulin resistance in hypertension: Metabolic syndrome revisited. Canadian Journal Of Cardiology, 36, 671682.Google Scholar
Gao, X., Xu, X., Pang, J., Zhang, C., Ding, J. M., Peng, X., … Cao, J. M. (2007). NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiological Research, 56, 559569.Google ScholarPubMed
GBD 2017 Risk Factor Collaborators. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 19231994.CrossRefGoogle Scholar
Hannun, Y. A., & Obeid, L. M. (2008). Principles of bioactive lipid signalling: Lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 9, 139150.CrossRefGoogle ScholarPubMed
Hanzu, F. A., Vinaixa, M., Papageorgiou, A., Parrizas, M., Correig, X., Delgado, S., … Gomis, R. (2014). Obesity rather than regional fat depots marks the metabolomic pattern of adipose tissue: An untargeted metabolomic approach. Obesity (Silver Spring), 22, 698704.CrossRefGoogle Scholar
Ho, J. E., Larson, M. G., Ghorbani, A., Cheng, S., Chen, M. H., Keyes, M., … Wang, T. J. (2016). Metabolomic profiles of body mass index in the Framingham Heart Study reveal distinct cardiometabolic phenotypes. PLoS One, 11, e148361.CrossRefGoogle ScholarPubMed
Kettunen, J., Tukiainen, T., Sarin, A. P., Ortega-Alonso, A., Tikkanen, E., Lyytikainen, L. P., … Ripatti, S. (2012). Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genetics, 44, 269276.CrossRefGoogle ScholarPubMed
Kim, J. Y., Park, J. Y., Kim, O. Y., Ham, B. M., Kim, H. J., Kwon, D. Y., … Lee, J. H. (2010). Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). Journal Of Proteome Research, 9, 43684375.CrossRefGoogle Scholar
Kraus, W. E., Pieper, C. F., Huffman, K. M., Thompson, D. K., Kraus, V. B., Morey, M. C., … Newgard, C. B. (2016). Association of plasma small-molecule intermediate metabolites with age and body mass index across six diverse study populations. Journals of Gerontology, Series A: Biological Sciences, 71, 15071513.CrossRefGoogle ScholarPubMed
Lam, C. K., Chari, M., Su, B. B., Cheung, G. W., Kokorovic, A., Yang, C. S., … Lam, T. K. (2010). Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. Journal Of Biological Chemistry, 285, 2191321921.CrossRefGoogle ScholarPubMed
Lara, B. S., Razquin, M., Jimenez, I., Vazquez, A., Gisbert, J. P., & Pajares, J. M. (2000). 13C-phenylalanine and 13C-methacetin breath test to evaluate functional capacity of hepatocyte in chronic liver disease. Digestive and Liver Disease, 32, 226232.Google Scholar
Li, L., Gao, W., Yu, C., Lv, J., Cao, W., Zhan, S., … Hu, Y. (2013). The Chinese National Twin Registry: An update. Twin Research and Human Genetics, 16, 8690.CrossRefGoogle ScholarPubMed
Li, X. X., Zhang, S. J., Man, K. Y., Chiu, A. P., Lo, L. H., To, J. C., … Keng, V. W. (2020). Schwann cell-specific Pten inactivation reveals essential role of the sympathetic nervous system activity in adipose tissue development. Biochemical and Biophysical Research Communications, 531, 118124.CrossRefGoogle ScholarPubMed
Liao, C., Gao, W., Cao, W., Lv, J., Yu, C., Wang, S., … Li, L. (2015). Associations of body composition measurements with serum lipid, glucose and insulin profile: A Chinese Twin Study. PLoS One, 10, e140595.CrossRefGoogle ScholarPubMed
Macfarlane, D., Chan, A., & Cerin, E. (2011). Examining the validity and reliability of the Chinese version of the International Physical Activity Questionnaire, long form (IPAQ-LC). Public Health Nutrition, 14, 443450.CrossRefGoogle Scholar
Menke, A., Muntner, P., Wildman, R. P., Reynolds, K., & He, J. (2007). Measures of adiposity and cardiovascular disease risk factors. Obesity (Silver Spring), 15, 785795.CrossRefGoogle ScholarPubMed
Mihalik, S. J., Michaliszyn, S. F., de Las, H. J., Bacha, F., Lee, S., Chace, D. H., … Arslanian, S. A. (2012). Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: Evidence for enhanced mitochondrial oxidation. Diabetes Care, 35, 605611.CrossRefGoogle ScholarPubMed
Moore, S. C., Matthews, C. E., Sampson, J. N., Stolzenberg-Solomon, R. Z., Zheng, W., Cai, Q., … Cross, A. J. (2014). Human metabolic correlates of body mass index. Metabolomics, 10, 259269.CrossRefGoogle ScholarPubMed
Muniandy, M., Velagapudi, V., Hakkarainen, A., Lundbom, J., Lundbom, N., Rissanen, A., … Ollikainen, M. (2019). Plasma metabolites reveal distinct profiles associating with different metabolic risk factors in monozygotic twin pairs. International Journal of Obesity, 43, 487502.CrossRefGoogle ScholarPubMed
Nan, C., Guo, B., Warner, C., Fowler, T., Barrett, T., Boomsma, D., … Zeegers, M. (2012). Heritability of body mass index in pre-adolescence, young adulthood and late adulthood. European Journal Of Epidemiology, 27, 247253.CrossRefGoogle ScholarPubMed
NCD Risk Factor Collaboration. (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet, 390, 26272642.CrossRefGoogle Scholar
Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Slentz, C. A. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311326.CrossRefGoogle ScholarPubMed
Oberbach, A., Bluher, M., Wirth, H., Till, H., Kovacs, P., Kullnick, Y., … von Bergen, M. (2011). Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. Journal of Proteome Research, 10, 47694788.CrossRefGoogle ScholarPubMed
Pietilainen, K. H., Naukkarinen, J., Rissanen, A., Saharinen, J., Ellonen, P., Keranen, H., … Peltonen, L. (2008). Global transcript profiles of fat in monozygotic twins discordant for BMI: Pathways behind acquired Obesity. PLoS Medicine, 5, e51.CrossRefGoogle ScholarPubMed
Pietiläinen, K. H., Sysi-Aho, M., Rissanen, A., Seppänen-Laakso, T., Yki-Järvinen, H., Kaprio, J., & Orešič, M. (2007). Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects – A monozygotic twin study. PLoS One, 2, e218.CrossRefGoogle ScholarPubMed
Rauschert, S., Uhl, O., Koletzko, B., & Hellmuth, C. (2014). Metabolomic biomarkers for obesity in humans: A short review. Annals of Nutrition and Metabolism, 64, 314324.CrossRefGoogle ScholarPubMed
Sautin, Y. Y., Nakagawa, T., Zharikov, S., & Johnson, R. J. (2007). Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. American Journal of Physiology-Cell Physiology, 293, C584C596.CrossRefGoogle ScholarPubMed
Short, K. R., Chadwick, J. Q., Teague, A. M., Tullier, M. A., Wolbert, L., Coleman, C., & Copeland, K. C. (2019). Effect of obesity and exercise training on plasma amino acids and amino metabolites in American Indian adolescents. Journal of Clinical Endocrinology and Metabolism, 104, 32493261.CrossRefGoogle ScholarPubMed
Urushitani, M., Nakamizo, T., Inoue, R., Sawada, H., Kihara, T., Honda, K., … Shimohama, S. (2001). N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: A mechanism distinct from chronic neurotoxicity after Ca(2+) influx. Journal of Neuroscience Research, 63, 377387.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Vogelzangs, N., van der Kallen, C., van Greevenbroek, M., van der Kolk, B. W., Jocken, J., Goossens, G. H., … Arts, I. (2020). Metabolic profiling of tissue-specific insulin resistance in human obesity: Results from the Diogenes Study and the Maastricht Study. International Journal of Obesity, 44, 13761386.CrossRefGoogle ScholarPubMed
Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., …Gerszten, R. E. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448453.CrossRefGoogle ScholarPubMed
Young, J. B., Daly, P. A., Uemura, K., & Chaouloff, F. (1994). Effects of chronic lard feeding on sympathetic nervous system activity in the rat. American Journal of Physiology, 267, R1320R1328.Google ScholarPubMed
Zeng, M., Liang, Y., Li, H., Wang, M., Wang, B., Chen, X., … Wu, J. (2010). Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 52, 265272.CrossRefGoogle ScholarPubMed
Zhang, A., Sun, H., & Wang, X. (2012). Serum metabolomics as a novel diagnostic approach for disease: A systematic review. Analytical And Bioanalytical Chemistry, 404, 12391245.CrossRefGoogle ScholarPubMed
Zhang, J. X., Zhang, Y. P., Wu, Q. N., & Chen, B. (2015). Uric acid induces oxidative stress via an activation of the renin-angiotensin system in 3T3-L1 adipocytes. Endocrine, 48, 135142.CrossRefGoogle ScholarPubMed
Zhou, B., Li, L., Lyu, J., Yu, C., Wang, S., Pang, Z., … Cao, W. (2015). Heritability of body mass index on Chinese adult twins from nine provinces/cities in China. Zhonghua Liu Xing Bing Xue Za Zhi, 36, 299303.Google ScholarPubMed
Supplementary material: PDF

Liao et al. supplementary material

Tables S1-S7

Download Liao et al. supplementary material(PDF)
PDF 514 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Associations of Obesity Measurements with Serum Metabolomic Profile: A Chinese Twin Study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Associations of Obesity Measurements with Serum Metabolomic Profile: A Chinese Twin Study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Associations of Obesity Measurements with Serum Metabolomic Profile: A Chinese Twin Study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *