Skip to main content Accessibility help
×
Home

Stable models for infinitary formulas with extensional atoms

  • AMELIA HARRISON (a1) and VLADIMIR LIFSCHITZ (a1)

Abstract

The definition of stable models for propositional formulas with infinite conjunctions and disjunctions can be used to describe the semantics of answer set programming languages. In this note, we enhance that definition by introducing a distinction between intensional and extensional atoms. The symmetric splitting theorem for first-order formulas is then extended to infinitary formulas and used to reason about infinitary definitions.

Copyright

References

Hide All
Ferraris, P. 2005. Answer sets for propositional theories. In Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), 119–131.
Ferraris, P. 2007. A logic program characterization of causal theories. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 366–371.
Ferraris, P., Lee, J. and Lifschitz, V. 2007. A new perspective on stable models. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 372–379.
Ferraris, P., Lee, J. and Lifschitz, V. 2011. Stable models and circumscription. Artificial Intelligence 175, 236263.
Ferraris, P., Lee, J., Lifschitz, V. and Palla, R. 2009. Symmetric splitting in the general theory of stable models. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 797–803.
Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V. and Schaub, T. 2015. Abstract Gringo. Theory and Practice of Logic Programming 15, 449463.
Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In Proceedings of International Logic Programming Conference and Symposium, Kowalski, R. and Bowen, K., Eds. MIT Press, 10701080.
Gelfond, M. and Przymusinska, H. 1996. Towards a theory of elaboration tolerance: Logic programming approach. International Journal of Software Engineering and Knowledge Engineering 6, 1, 89112.
Harrison, A., Lifschitz, V., Pearce, D. and Valverde, A. 2015. Infinitary equilibrium logic and strong equivalence. In Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), 398–410.
Lierler, Y. and Truszczynski, M. 2011. Transition systems for model generators — a unifying approach. Theory and Practice of Logic Programming, 27th International Conference on Logic Programming (ICLP) Special Issue 11, issue 4–5.
Lifschitz, V. and Yang, F. 2012. Lloyd-Topor completion and general stable models. In Working Notes of the 5th Workshop of Answer Set Programming and Other Computing Paradigms (ASPOCP).
Oikarinen, E. and Janhunen, T. 2008. Achieving compositionality of the stable model semantics for Smodels programs. Theory and Practice of Logic Programming 5–6, 717761.
Truszczynski, M. 2012. Connecting first-order ASP and the logic FO(ID) through reducts. In Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir Lifschitz, Erdem, E., Lee, J., Lierler, Y., and Pearce, D., Eds. Springer, 543559.

Stable models for infinitary formulas with extensional atoms

  • AMELIA HARRISON (a1) and VLADIMIR LIFSCHITZ (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed