Skip to main content Accessibility help
×
Home

Querying Knowledge via Multi-Hop English Questions

  • TIANTIAN GAO (a1), PAUL FODOR (a1) and MICHAEL KIFER (a1)

Abstract

The inherent difficulty of knowledge specification and the lack of trained specialists are some of the key obstacles on the way to making intelligent systems based on the knowledge representation and reasoning (KRR) paradigm commonplace. Knowledge and query authoring using natural language, especially controlled natural language (CNL), is one of the promising approaches that could enable domain experts, who are not trained logicians, to both create formal knowledge and query it. In previous work, we introduced the KALM system (Knowledge Authoring Logic Machine) that supports knowledge authoring (and simple querying) with very high accuracy that at present is unachievable via machine learning approaches. The present paper expands on the question answering aspect of KALM and introduces KALM-QA (KALM for Question Answering) that is capable of answering much more complex English questions. We show that KALM-QA achieves 100% accuracy on an extensive suite of movie-related questions, called MetaQA, which contains almost 29,000 test questions and over 260,000 training questions. We contrast this with a published machine learning approach, which falls far short of this high mark.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Querying Knowledge via Multi-Hop English Questions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Querying Knowledge via Multi-Hop English Questions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Querying Knowledge via Multi-Hop English Questions
      Available formats
      ×

Copyright

References

Hide All
Angeli, G., Premkumar, M. J. J., and Manning, C. D. 2015. Leveraging linguistic structure for open domain information extraction. In 53rd Annual Meeting of the Association for Computational Linguistics. ACL, Beijing, China, 344354.
Bordes, A., Chopra, S., and Weston, J. 2014. Question answering with subgraph embeddings. In 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Moschitti, A., Pang, B., and Daelemans, W., Eds. ACL, Doha, Qatar, 615620.
Das, D., Chen, D., Martins, A. F. T., Schneider, N., and Smith, N. A. 2014. Frame-semantic parsing. Comp, Linguistics 40, 1, 956.
Fillmore, C. J. and Baker, C. F. 2001. Frame semantics for text understanding. In Proceedings of WordNet and Other Lexical Resources Workshop. NAACL, Pittsburgh, USA.
Fuchs, N. E., Kaljurand, K., and Kuhn, T. 2008. Attempto controlled english for knowledge representation. In Reasoning Web. Springer, Venice, Italy, 104124.
Gao, T. 2019. Development of KALM-QA. Stony Brook University. https://github.com/tiantiangao7/kalm-qa.
Gao, T., Fodor, P., and Kifer, M. 2018a. High accuracy question answering via hybrid controlled natural language. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI2018). IEEE, Santiago, Chile, 17–24.
Gao, T., Fodor, P., and Kifer, M. 2018b. Knowledge authoring for rule-based reasoning. In On the Move to Meaningful Internet Systems. OTM 2018 Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2018, H. Panetto, C. Debruyne, H. A. Proper, C. A. Ardagna, D. Roman, and R. Meersman, Eds. Lecture Notes in Computer Science, vol. 11230. Springer, Valletta, Malta, 461480.
Gao, T., Fodor, P., and Kifer, M. 2019. Querying Knowledge via Multi-Hop English Questions. ArXiv e-prints abs/1907.08176, 119.
Gomez, F. 2008. The acquisition of common sense knowledge by being told: an application of nlp to itself. In International Conference on Application of Natural Language to Information Systems. Springer, London, UK, 4051.
Gomez, F., Hull, R. D., and Segami, C. 1994. Acquiring knowledge from encyclopedic texts. In 4th Applied Natural Language Processing Conference (ANLP). ACL, Stuttgart, Germany, 8490.
Johnson, C. R., Fillmore, C. J., Petruck, M. R., Baker, C. F., Ellsworth, M. J., Ruppenhofer, J., and Wood, E. J. 2002. FrameNet: Theory and Practice.
Kuhn, T. 2014. A survey and classification of controlled natural languages. Comp. Linguistics 40, 1, 121170.
Li, F. and Jagadish, H. V. 2014. Constructing an interactive natural language interface for relational databases. PVLDB 8, 1, 7384.
López, V., Fernández, M., Motta, E., and Stieler, N. 2012. PowerAqua: Supporting users in querying and exploring the semantic web. Semantic Web 3, 3, 249265.
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and McClosky, D. 2014. The Stanford CoreNLP natural language processing toolkit.
Mausam, , Schmitz, M., Soderland, S., Bart, R., and Etzioni, O. 2012. Open language learning for information extraction. In The Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL. Association for Computational Linguistics, Jeju Island, Korea, 523534.
Miller, A. H., Fisch, A., Dodge, J., Karimi, A., Bordes, A., and Weston, J. 2016. Key-value memory networks for directly reading documents. In 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), J. Su, X. Carreras, and K. Duh, Eds. The Association for Computational Linguistics, Austin, TX, 1400–1409.
Navigli, R. and Ponzetto, S. P. 2012. BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial Intelligence 193, 217250.
Object-Management-Group. 2017. Semantics of business vocabulary and business rules (SBVR), v. 1.4. OMG standards document. http://www.omg.org/spec/SBVR/Current.
Ringgaard, M., Gupta, R., and Pereira, F. C. N. 2017. SLING: A framework for frame semantic parsing. CoRR 1710.07032, 19.
Saha, D., Floratou, A., Sankaranarayanan, K., Minhas, U. F., Mittal, A. R., and Özcan, F. 2016. ATHENA: an ontology-driven system for natural language querying over relational data stores. PVLDB 9, 12, 12091220.
Schwitter, R. 2010. Controlled natural languages for knowledge representation. In COLING 2010, 23rd Intl. Conf. on Computational Linguistics, Posters Volume, 23-27. ACL, Beijing, China, 11131121.
Zhang, Y., Dai, H., Kozareva, Z., Smola, A. J., and Song, L. 2018a. The MetaQA dataset. https://github.com/yuyuz/MetaQA.
Zhang, Y., Dai, H., Kozareva, Z., Smola, A. J., and Song, L. 2018b. Variational reasoning for question answering with knowledge graph. See McIlraith and Weinberger (2018), 60696076.

Keywords

Querying Knowledge via Multi-Hop English Questions

  • TIANTIAN GAO (a1), PAUL FODOR (a1) and MICHAEL KIFER (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed