Skip to main content Accessibility help

The P-Box CDF-Intervals: A Reliable Constraint Reasoning with Quantifiable Information



This paper introduces a new constraint domain for reasoning about data with uncertainty. It extends convex modeling with the notion of p-box to gain additional quantifiable information on the data whereabouts. Unlike existing approaches, the p-box envelops an unknown probability instead of approximating its representation. The p-box bounds are uniform cumulative distribution functions (cdf) in order to employ linear computations in the probabilistic domain. The reasoning by means of p-box cdf-intervals is an interval computation which is exerted on the real domain then it is projected onto the cdf domain. This operation conveys additional knowledge represented by the obtained probabilistic bounds. The empirical evaluation of our implementation shows that, with minimal overhead, the output solution set realizes a full enclosure of the data along with tighter bounds on its probabilistic distributions.



Hide All
Benhamou, F. and Older, W. J. 1997. Applying interval arithmetic to real, integer, and boolean constraints. The Journal of Logic Programming 32, 1, 124.
Bistarelli, S., Frühwirth, T., and Marte, M. 2002. Soft constraint propagation and solving in chrs. In Proceedings of the 2002 ACM symposium on Applied computing. ACM, 15.
Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., and Fargier, H. 1999. Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints 4, 3, 199240.
Climent, L., Wallace, R. J., Salido, M. A., and Barber, F. 2014. Robustness and stability in constraint programming under dynamism and uncertainty. Journal of Artificial Intelligence Research 49, 4978.
Dubois, D., Fargier, H., and Prade, H. 1996. Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty. Applied Intelligence 6, 4, 287309.
Dutta, P., Chakraborty, D., and Roy, A. 2005. A single-period inventory model with fuzzy random variable demand. Mathematical and Computer Modelling 41, 8, 915922.
ECRC. 1994. Eclipse (a) user manual, (b) extensions of the user manual. Tech. rep., ECRC.
Fargier, H., Lang, J., and Schiex, T. 1996. Mixed constraint satisfaction: A framework for decision problems under incomplete knowledge. In Proceedings of the National Conference on Artificial Intelligence. 175–180.
Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., and Sentz, K. 2003. Constructing Probability Boxes and Dempster-Shafer structures, Sandia National Laboratories. Tech. rep., SANDD2002-4015.
Glen, A., Leemis, L., and Drew, J. 2004. Computing the distribution of the product of two continuous random variables. Computational statistics & data analysis 44, 3, 451464.
Gum, I. 1995. Guide to the expression of uncertainty in measurement. BIPM, IEC, IFCC, ISO, IUPAP, IUPAC, OIML.
Halpern, J. 2003. Reasoning about uncertainty.
Holzbaur, C. 1992. Metastructures vs. attributed variables in the context of extensible unification - applied for the implementation of clp languages. In In 1992 International Symposium on Programming Language Implementation and Logic Programming. Springer Verlag, 260268.
Jaffar, J. and Lassez, J.-L. 1987. Constraint logic programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. ACM, 111119.
Le Huitouze, S. 1990. A new data structure for implementing extensions to Prolog. In Programming Language Implementation and Logic Programming. Springer, 136150.
Petrović, D., Petrović, R., and Vujošević, M. 1996. Fuzzy models for the newsboy problem. International Journal of Production Economics 45, 1, 435441.
Saad, A., Gervet, C., and Abdennadher, S. 2010. Constraint Reasoning with Uncertain Data Using CDF-Intervals. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 292–306.
Saad, A., Gervet, C., and Fruehwirth, T. 2012. CDF-Intervals Revisited. The Eleventh International Workshop on Constraint Modelling and Reformulation - ModRef2012.
Schiex, T., Fargier, H., and Verfaillie, G. 1995. Valued constraint satisfaction problems: Hard and easy problems. In International Joint Conference on Artificial Intelligence. Vol. 14. 631–639.
Smith, W. and La Poutre, H. 1992. Approximation of staircases by staircases. Tech. rep., 92-109-3-0058-8 NEC Research Institute Inc., New Jersey.
Tarim, S. and Kingsman, B. 2004. The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. International Journal of Production Economics 88, 105119.
Tarim, S. A., Manandhar, S., and Walsh, T. 2006. Stochastic constraint programming: A scenario-based approach. Constraints 11, 1, 5380.
Walsh, T. 2002. Stochastic constraint programming. Proceedings of the 15th Eureopean Conference on Artificial Intelligence, 111–115.
Yorke-Smith, N. and Gervet, C. 2009. Certainty closure: Reliable constraint reasoning with incomplete or erroneous data. ACM Transactions on Computational Logic (TOCL) 10, 1, 3.


The P-Box CDF-Intervals: A Reliable Constraint Reasoning with Quantifiable Information



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed