Skip to main content Accessibility help
×
Home

A goal-directed implementation of query answering for hybrid MKNF knowledge bases

  • ANA SOFIA GOMES (a1), JOSÉ JÚLIO ALFERES (a1) and TERRANCE SWIFT (a1)

Abstract

Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning, while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by the Coherent Description Framework Type-1 ( $\mathcal{ALCQ}$ ) theory.

Copyright

References

Hide All
Alferes, J. J., Knorr, M. and Swift, T. Queries to hybrid MKNF knowledge bases through oracular tabling. ACM Transactions on Computational Logic. Accessed 6 December 2012. URL: http://tocl.acm.org/accepted/464knorr.pdf.
Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. and Patel-Schneider, P. F., Eds. 2007. The Description Logic Handbook: Theory, Implementation, and Applications, 2nd ed. Cambridge University Press, Cambridge, UK.
Baral, C. 2002. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, Cambridge, UK.
Calì, A., Gottlob, G. and Lukasiewicz, T. 2012. A general datalog-based framework for tractable query answering over ontologies. Journal of Web Semantics 14 5783.
Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic programs. Journal of the ACM 43 1 (January), 2074.
Drabent, W. and Małuszynski, J. 2007. Well-founded semantics for hybrid rules. In Proceedings of the International Conference on Web Reasoning and Rule Systems, Marchiori, M., Pan, J. Z. and de Sainte Marie, C., Eds. Springer, New York, 115.
Eiter, T., Lukasiewicz, T., Schindlauer, R. and Tompits, H. 2004a. Combining answer set programming with description logics for the semantic web. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, Dubois, D., Welty, C. A. and Williams, M.-A., Eds. Springer, Innsbruck, Austria, 141151.
Eiter, T., Lukasiewicz, T., Schindlauer, R. and Tompits, H. 2004b. Well-founded semantics for description logic programs in the semantic web. In Rules and Rule Markup Languages for the Semantic Web, Antoniou, G. and Boley, H., Eds. Springer, Hiroshima, Japan, 8197.
Gelfond, M. and Lifschitz, V. 1990. Logic programs with classical negation. In International Conference on Logic Programming, Warren, D. H. D. and Szeredi, P., Eds. MIT Press, Jerusalem, Israel, 579597.
Grimm, S. and Hitzler, P. 2007. Semantic matchmaking of web resources with local closed-world reasoning. International Journal of e-Commerce 12 2, 89126.
Grosof, B. 2009. SILK: Semantic rules take the next big step in power. Accessed 6 December 2012. URL: http://silk.semwebcentral.org.
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F. and Rudolph, S., Eds. 2009. OWL 2 Web Ontology Language: Primer. W3C Recommendation 27 October 2009. Accessed 6 December 2012. URL: http://www.w3.org/TR/owl2-primer/.
Hitzler, P. and Parsia, B. 2009. Ontologies and rules. In Handbook on Ontologies, 2nd ed., Staab, S. and Studer, R., Eds. Springer, New York.
Horrocks, I., Motik, B., Rosati, R. and Sattler, U. 2006. Can OWL and logic programming live together happily ever after? In Proceedings of the International Semantic Web Conference, Cruz, I. F., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M. and Aroyo, L., Eds. Springer, Athens, GA, USA, 501514.
Horrocks, I. and Patel-Schneider, P. 1999. Optimizing description logic subsumption. Journal of Logic and Computation 9 3, 267293.
Knorr, M., Alferes, J. J. and Hitzler, P. 2008. A coherent well-founded model for hybrid MKNF knowledge bases. In Proceedings of European Conference on Artificial Intelligence, Ghallab, M., Spyropoulos, C. D., Fakotakis, N., Avouris, N. M., Eds. IOS Press, Patras, Greece, 99103.
Knorr, M., Alferes, J. J. and Hitzler, P. 2011. Local closed world reasoning with description logics under the well-founded semantics. Artificial Intelligence 175 9–10, 15281554.
Lifschitz, V. 1991. Nonmonotonic databases and epistemic queries. In Proceedings of the International Joint Conference on Artificial Intelligence, Mylopoulos, J. and Reiter, R., Eds. Morgan Kaufmann, Sydney, Australia, 381386.
Lukacsy, G., Szeredi, P. and Kadàr, B. 2008. Prolog-based description logic reasoning. In Proceedings of the International Conference on Logic Programming, de la Banda, M. G. and Pontelli, E., Eds. Springer, Udine, Italy, 455469.
Morgenstern, L., Welty, C. and Boley, H., Eds. 2010. RIF Primer. W3C Recommendation, 22 June 2010. Accessed 6 December 2012. URL: http://www.w3.org/2005/rules/wiki/Primer.
Motik, B. 2006. Reasoning in Description Logics Using Resolution and Deductive Databases. PhD thesis, University of Karlsruhe, Karlsruhe, Germany.
Motik, B. and Rosati, R. 2007. A faithful integration of description logics with logic programming. In Proceedings of the International Joint Conference on Artificial Intelligence, Veloso, M. M., Ed. AAAI Press, Hyderabad, India, 477482.
Patel, C., Cimino, J. J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E. and Srinivas, K. 2007. Matching patient records to clinical trials using ontologies. In Proceedings of the International Semantic Web Conference/Asian Semantic Web Conference, Aberer, K., Choi, K.-S., Noy, N. F., Allemang, D., Lee, K.-I., Nixon, L. J. B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G. and Cudré-Mauroux, P., Eds. Springer, Busan, Korea, 816829.
Schindlauer, R. 2006. Answer-Set Programming for the Semantic Web. PhD thesis, Technischen Universitaet Wien Fakultaet fuer Informatik, Glockengasse 6/19, A-1020 Wien, Austria.
Schmidt-Strauss, M. and Smolka, G. 1990. Attributive concept descriptions with complements. Artificial Intelligence 48 126.
Swift, T. 2004. Deduction in ontologies via answer set programming. In Proceedings of the International Conference on Logic Programming and Non-Monotonic Reasoning, Lifschitz, V. and Niemelä, I., Eds. Springer, Fort Lauderdale, FL, USA, 275289.
Swift, T. and Warren, D. S. 2003. Cold dead fish: A system for managing ontologies. Accessed 6 December 2012. URL: http://xsb.sourceforge.net.
Swift, T. and Warren, D. 2012. XSB: Extending the power of Prolog using tabling. Theory and Practice of Logic Programming 12 1–2, 157187.
van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In Proceedings of the ACM Conference on Principles of Database Systems, Silberschatz, A., Ed. ACM Press, Philadelphia, Pennsylvania, USA. 110.
van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. Unfounded sets and well-founded semantics for general logic programs. Journal of the ACM 38 3, 620650.
Yang, G., Kifer, M. and Zhao, C. 2003. Flora-2: A rule-based knowledge representation and inference infrastructure for the semantic web. In Proceedings of the International Conference on Ontologies, Databases and Applications of Semantics, Meersman, R., Tari, Z. and Schmidt, D. C., Eds. Springer, Catania, Sicily, Italy, 671688.

Keywords

Related content

Powered by UNSILO

A goal-directed implementation of query answering for hybrid MKNF knowledge bases

  • ANA SOFIA GOMES (a1), JOSÉ JÚLIO ALFERES (a1) and TERRANCE SWIFT (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.