Skip to main content Accessibility help
×
Home

Complexity of super-coherence problems in ASP*

  • MARIO ALVIANO (a1), WOLFGANG FABER (a1) and STEFAN WOLTRAN (a2)

Abstract

Adapting techniques from database theory in order to optimize Answer Set Programming (ASP) systems, and in particular the grounding components of ASP systems, is an important topic in ASP. In recent years, the Magic Set method has received some interest in this setting, and a variant of it, called Dynamic Magic Set, has been proposed for ASP. However, this technique has a caveat, because it is not correct (in the sense of being query-equivalent) for all ASP programs. In a recent work, a large fragment of ASP programs, referred to as super-coherent programs, has been identified, for which Dynamic Magic Set is correct. The fragment contains all programs which possess at least one answer set, no matter which set of facts is added to them. Two open question remained: How complex is it to determine whether a given program is super-coherent? Does the restriction to super-coherent programs limit the problems that can be solved? Especially the first question turned out to be quite difficult to answer precisely. In this paper, we formally prove that deciding whether a propositional program is super-coherent is Π3 P -complete in the disjunctive case, while it is Π2 P -complete for normal programs. The hardness proofs are the difficult part in this endeavor: We proceed by characterizing the reductions by the models and reduct models which the ASP programs should have, and then provide instantiations that meet the given specifications. Concerning the second question, we show that all relevant ASP reasoning tasks can be transformed into tasks over super-coherent programs, although this transformation is more of theoretical than practical interest.

Copyright

Footnotes

Hide All
*

Preliminary versions of this paper have been presented at the International Conference on Logic Programming (ICLP) workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP) and at the Convegno Italiano di Logica Computazionale (CILC).

Footnotes

References

Hide All
Alviano, M. and Faber, W. 2010. Dynamic magic sets for super-consistent answer set programs. In Proceedings of the 3rd Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2010), M. Balduccini and S. Woltran, Eds.
Alviano, M. and Faber, W. 2011. Dynamic magic sets and super-coherent answer set programs. AI Communications 24, 2, 125145.
Alviano, M., Faber, W., Greco, G. and Leone, N. 2012. Magic sets for disjunctive datalog programs. Artificial Intelligence (Elsevier) 187–188, 156192.
Apt, K. R., Blair, H. A. and Walker, A. 1988. Towards a Theory of Declarative Knowledge. In Foundations of Deductive Databases and Logic Programming, Minker, J., Ed. Morgan Kaufmann, Washington, DC, 89148.
Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J. D. 1986. Magic sets and other strange ways to implement logic programs. In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Cambridge, MA, 115.
Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge, UK.
Beeri, C. and Ramakrishnan, R. 1991. On the power of magic. Journal of Logic Programming 10, 255259.
Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12, 5387.
Cumbo, C., Faber, W., Greco, G. and Leone, N. 2004. Enhancing the magic-set method for disjunctive datalog programs. In Proceedings of the the 20th International Conference on Logic Programming – ICLP'04. LNCS, vol. 3132. Springer-Verlag, Berlin, Germany, 371385.
Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M. and Schaub, T. 2008. Conflict-driven disjunctive answer set solving. In Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), Brewka, G. and Lang, J., Eds. AAAI Press, Sydney, Australia, 422432.
Dung, P. M. 1992. On the relations between stable and well-founded semantics of logic programs. Theoretical Computer Science 105, 1, 725.
Eiter, T., Fink, M., Tompits, H. and Woltran, S. 2004. On eliminating disjunctions in stable logic programming. In Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning (KR 2004). AAAI Press, Palo Alto, CA, 447458.
Eiter, T., Fink, M. and Woltran, S. 2007. Semantical characterizations and complexity of equivalences in stable logic programming. ACM Transactions on Computational Logic 8, 3, 153.
Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming: propositional case. Annals of Mathematics and Artificial Intelligence 15, 3–4, 289323.
Eiter, T., Gottlob, G. and Mannila, H. 1997. Disjunctive datalog. ACM Transactions on Database Systems 22, 3 (September), 364418.
Eiter, T., Tompits, H. and Woltran, S. 2005. On solution correspondences in answer set programming. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI'05), Kaelbling, L. P. and Saffiotti, A., Eds. Professional Book Center, Denver CO, 97102.
Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365385.
Gottlob, G., Leone, N. and Veith, H. 1999. Succinctness as a source of expression complexity. Annals of Pure and Applied Logic 97, 1–3, 231260.
Greco, S. 2003. Binding propagation techniques for the optimization of bound disjunctive queries. IEEE Transactions on Knowledge and Data Engineering 15, 2 (March/April), 368385.
Janhunen, T., Niemelä, I., Seipel, D., Simons, P. and You, J.-H. 2006. Unfolding partiality and disjunctions in stable model semantics. ACM Transactions on Computational Logic 7, 1 (January), 137.
Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W. and Terracina, G. 2005. The INFOMIX system for advanced integration of incomplete and inconsistent data. In Proceedings of the 24th ACM SIGMOD International Conference on Management of Data (SIGMOD 2005). ACM Press, Baltimore, MD, 915917.
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F. 2006. The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7, 3 (July), 499562.
Lierler, Y. 2005. Disjunctive answer set programming via satisfiability. In Proceedings of Logic Programming and Nonmonotonic Reasoning – 8th International Conference (LPNMR'05), Diamante, Italy, September 2005, Baral, C., Greco, G., Leone, N. and Terracina, G., Eds. LNCS, vol. 3662. Springer-Verlag, New York, NY, 447451.
Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In Proceedings of the 11th International Conference on Logic Programming (ICLP'94), Santa Margherita Ligure, Italy, Van Hentenryck, P., Ed. MIT Press, Cambridge, MA, 2337.
Manna, M., Ruffolo, M., Oro, E., Alviano, M. and Leone, N. 2012. The HiLeX system for semantic information extraction. Transactions on Large-Scale Data and Knowledge-Centered Systems, 91–125.
Manna, M., Scarcello, F. and Leone, N. 2011. On the complexity of regular-grammars with integer attributes. Journal of Computer and System Sciences 77, 2, 393421.
Oetsch, J., Tompits, H. and Woltran, S. 2007. Facts do not cease to exist because they are ignored: Relativised uniform equivalence with answer-set projection. In Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI'07). AAAI Press, Palo Alto, CA, 458464.
Papadimitriou, C. H. and Yannakakis, M. 1997. Tie-breaking semantics and structural totality. Journal of Computer and System Sciences 54, 1, 4860.
Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S. M., Iiritano, S., Manna, M., and Leone, N. 2010. A logic-based system for e-tourism. Fundamenta Informaticae 105, 1–2, 3555.
Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S. and Leone, N. 2012. Team-building with answer set programming in the Gioia-Tauro seaport. Theory and Practice of Logic Programming (Cambridge University Press) 12, 3, 361381.
Ullman, J. D. 1989. Principles of Database and Knowledge Base Systems. Computer Science Press, Los Alamitos, CA.
You, J.-H. and Yuan, L. Y. 1994. A three-valued semantics for deductive databases and logic programs. Journal of Computer and System Sciences 49, 2, 334361.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed