Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T08:22:23.812Z Has data issue: false hasContentIssue false

CHR(PRISM)-based probabilistic logic learning

Published online by Cambridge University Press:  09 July 2010

JON SNEYERS
Affiliation:
Department of Computer Science, K.U. Leuven, Belgium (e-mail: jon.sneyers@cs.kuleuven.be, wannes.meert@cs.kuleuven.be, joost.vennekens@cs.kuleuven.be)
WANNES MEERT
Affiliation:
Department of Computer Science, K.U. Leuven, Belgium (e-mail: jon.sneyers@cs.kuleuven.be, wannes.meert@cs.kuleuven.be, joost.vennekens@cs.kuleuven.be)
JOOST VENNEKENS
Affiliation:
Department of Computer Science, K.U. Leuven, Belgium (e-mail: jon.sneyers@cs.kuleuven.be, wannes.meert@cs.kuleuven.be, joost.vennekens@cs.kuleuven.be)
YOSHITAKA KAMEYA
Affiliation:
Tokyo Institute of Technology, Japan (e-mail: kameya@mi.cs.titech.ac.jp, sato@mi.cs.titech.ac.jp)
TAISUKE SATO
Affiliation:
Tokyo Institute of Technology, Japan (e-mail: kameya@mi.cs.titech.ac.jp, sato@mi.cs.titech.ac.jp)

Abstract

PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules.

In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of “chance rules”. The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally, we identify potential application domains.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdennadher, S., Frühwirth, T., and Meuss, H. 1999. Confluence and semantics of constraint simplification rules. Constraints 4, 2, 133165.CrossRefGoogle Scholar
Abdennadher, S., Olama, A., Salem, N., and Thabet, A. 2006. ARM: Automatic Rule Miner. In LOPSTR 2006, Puebla, G., Ed. Lecture Notes in Computer Science, vol. 4407. Springer, 1725.Google Scholar
Boenn, G., Brain, M., De Vos, M., and ffitch, J. 2008. Automatic composition of melodic and harmonic music by answer set programming. In ICLP 2008, de la Banda, M. Garcia and Pontelli, E., Eds. Lecture Notes in Computer Science, vol. 5366. Springer, 160174.Google Scholar
Christiansen, H. 2005. CHR grammars. TPLP 5 (4–5), 467501.Google Scholar
Christiansen, H. and Lassen, O. T. 2009. Preprocessing for optimization of probabilistic-logic models for sequence analysis. In ICLP 2009, Hill, P. M. and Warren, D. S., Eds. Lecture Notes in Computer Science, vol. 5649. Springer, 7083.Google Scholar
De Koninck, L., Schrijvers, T., and Demoen, B. 2007. User-definable rule priorities for CHR. In PPDP 2007, Leuschel, M. and Podelski, A., Eds. ACM Press, 2536.Google Scholar
Duck, G. J., Stuckey, P. J., García de la Banda, M., and Holzbaur, C. 2004. The refined operational semantics of Constraint Handling Rules. In ICLP 2004, Demoen, B. and Lifschitz, V., Eds. Lecture Notes in Computer Science, vol. 3132. Springer, 90104.Google Scholar
Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.CrossRefGoogle Scholar
Frühwirth, T., Di Pierro, A., and Wiklicky, H. 2002. Probabilistic Constraint Handling Rules. In WFLP 2002, Comini, M. and Falaschi, M., Eds. Electronic Notes in Theoretical Computer Science 76. Elsevier.Google Scholar
Getoor, L. and Taskar, B., Eds. 2007. Statistical Relational Learning. MIT Press.Google Scholar
Kameya, Y. and Sato, T. 2000. Efficient EM learning with tabulation for parameterized logic programs. In CL 2000, Lloyd, J., Dahl, V. et al. , Eds. Lecture Notes in Artificial Intelligence, vol. 1861. Springer, 269294.Google Scholar
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.Google Scholar
Raiser, F., Betz, H., and Frühwirth, T. 2009. Equivalence of CHR states revisited. In CHR 2009, Raiser, F. and Sneyers, J., Eds. 34–48.Google Scholar
Sato, T. 2008. A glimpse of symbolic-statistical modeling by PRISM. Journal of Intelligent Information Systems 31, 161176.CrossRefGoogle Scholar
Sato, T. and Kameya, Y. 2002. Statistical abduction with tabulation. In Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, Kakas, A. and Sadri, F., Eds. Lecture Notes in Computer Science, vol. 2408. Springer, 567587.Google Scholar
Schrijvers, T. and Demoen, B. 2004. The K.U. Leuven CHR system: Implementation and application. In CHR 2004, Frühwirth, T. and Meister, M., Eds. 8–12.Google Scholar
Sneyers, J. 2010. Result-directed CHR execution. In CHR 2010, Van Weert, P. and Koninck, L. De, Eds. (to appear).Google Scholar
Sneyers, J. and Frühwirth, T. 2008. Generalized CHR machines. In CHR 2008, Schrijvers, T., Frühwirth, T., and Raiser, F., Eds. 143–157.Google Scholar
Sneyers, J., Meert, W., and Vennekens, J. 2009. CHRiSM: Chance rules induce statistical models. In CHR 2009, Raiser, F. and Sneyers, J., Eds. 62–76.Google Scholar
Sneyers, J., Van Weert, P., Schrijvers, T., and De Koninck, L. 2010. As time goes by: Constraint Handling Rules—a survey of CHR research between 1998 and 2007. Theory and Practice of Logic Programming 10, 1 (January), 147.Google Scholar
Sneyers, J., Vennekens, J., and De Schreye, D. 2006. Probabilistic-logical modeling of music. In PADL 2006, Hentenryck, P. Van, Ed. 60–72.Google Scholar
Vennekens, J., Verbaeten, S., and Bruynooghe, M. 2004. Logic programs with annotated disjunctions. In ICLP 2004, Demoen, B. and Lifschitz, V., Eds. Lecture Notes in Computer Science, vol. 3132. Springer, 431445.Google Scholar