Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-mrc2z Total loading time: 0.287 Render date: 2021-04-19T07:52:14.637Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Compiling Input* FO(·) inductive definitions into tabled prolog rules for IDP3

Published online by Cambridge University Press:  25 September 2013

JOACHIM JANSEN
Affiliation:
Department of Computer Science, KU Leuven (e-mail: firstname.secondname@cs.kuleuven.be, albert.jorissen@ulyssis.org)
ALBERT JORISSEN
Affiliation:
Department of Computer Science, KU Leuven (e-mail: firstname.secondname@cs.kuleuven.be, albert.jorissen@ulyssis.org)
GERDA JANSSENS
Affiliation:
Department of Computer Science, KU Leuven (e-mail: firstname.secondname@cs.kuleuven.be, albert.jorissen@ulyssis.org)

Abstract

FO(·)IDP3 extends first-order logic with inductive definitions, partial functions, types and aggregates. Its model generator IDP3 first grounds the theory and then uses search to find the models. The grounder uses Lifted Unit Propagation (LUP) to reduce the size of the groundings of problem specifications in IDP3. LUP is in general very effective, but performs poorly on definitions of predicates whose two-valued interpretation can be computed from data in the input structure. To solve this problem, a preprocessing step is introduced that converts such definitions to Prolog code and uses XSB Prolog to compute their interpretation. The interpretation of these predicates is then added to the input structure, their definitions are removed from the theory and further processing is done by the standard IDP3 system. Experimental results show the effectiveness of our method.

Type
Regular Papers
Copyright
Copyright © 2013 [JOACHIM JANSEN, ALBERT JORISSEN and GERDA JANSSENS] 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aavani, A., Wu, X. N., Tasharrofi, S., Ternovska, E. and Mitchell, D. G. 2012. Enfragmo: A system for modelling and solving search problems with logic. In LPAR, 15–22.CrossRefGoogle Scholar
Alviano, M. and Faber, W. 2011. Dynamic magic sets and super-coherent answer set programs. AI Communications 24, 2, 125145.Google Scholar
Blockeel, H., Bogaerts, B., Bruynooghe, M., De Cat, B., De Pooter, S., Denecker, M., Labarre, A., Ramon, J. and Verwer, S. 2012. Modeling machine learning and data mining problems with FO(⋅). In Proceedings of the 28th International Conference on Logic Programming - Technical Communications (ICLP'12), Dovier, A. and Costa, V. Santos, Eds. Schloss Daghstuhl - Leibniz-Zentrum fuer Informatik, 1425.Google Scholar
De Pooter, S., Wittocx, J. and Denecker, M. 2011. A prototype of a knowledge-based programming environment. In International Conference on Applications of Declarative Programming and Knowledge Management.Google Scholar
Eén, N. and Sörensson, N. 2003. An extensible SAT-solver. In SAT, Giunchiglia, E. and Tacchella, A., Eds. LNCS, vol. 2919, Springer, 502518.Google Scholar
Faber, W., Leone, N., Mateis, C. and Pfeifer, G. 1999. Using database optimization techniques for nonmonotonic reasoning. In INAP Organizing Committee DDLP'99, 135–139.Google Scholar
Faber, W., Leone, N. and Perri, S. 2012. The intelligent grounder of DLV. Correct Reasoning, 247–264.Google Scholar
Gebser, M., Kaminski, R., König, A. and Schaub, T. 2011. Advances in gringo series 3. In Proceedings of the Eleventh International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'11), Delgrande, J. and Faber, W., Eds. Lecture Notes in Artificial Intelligence, vol. 6645, Springer-Verlag, 345351.CrossRefGoogle Scholar
Gebser, M., Schaub, T. and Thiele, S. 2007. GrinGo : A new grounder for answer set programming. In LPNMR, Baral, C., Brewka, G., and Schlipf, J. S., Eds. LNCS, vol. 4483, Springer, 266271.Google Scholar
Leone, N., Perri, S. and Scarcello, F. 2001. Improving ASP instantiators by join-ordering methods. In Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR '01), Springer-Verlag, London, UK, 280294.Google Scholar
Mariën, M., Wittocx, J., Denecker, M. and Bruynooghe, M. 2008. SAT(ID): Satisfiability of propositional logic extended with inductive definitions. In SAT, Büning, H. Kleine and Zhao, X., Eds. LNCS, vol. 4996, Springer, 211224.Google Scholar
Mitchell, D. G. and Ternovska, E. 2005. A framework for representing and solving NP search problems. In AAAI, Veloso, M. M. and Kambhampati, S., Eds. AAAI Press/The MIT Press, 430435.Google Scholar
Swift, T. and Warren, D. S. 2012. XSB: Extending prolog with tabled logic programming. Theory and Practice of Logic Programming 12, 157187.CrossRefGoogle Scholar
Swift, T., Warren, D. S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., de Castro, L., Marques, R. F., Saha, D., Dawson, S. and Kifer, M. 2013. The XSB System Version 3.3.x Volume 1: Programmer's Manual.Google Scholar
Syrjänen, T. 1998. Implementation of local grounding for logic programs with stable model semantics. Tech. Rep. B18, Helsinki University of Technology, Finland.Google Scholar
Vaezipoor, P., Mitchell, D. G. and Mariën, M. 2011. Lifted unit propagation for effective grounding. CoRR abs/1109.1317.Google Scholar
Vlaeminck, H. 2012. Applications of Feasible Inference for Expressive Logics. PhD thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium.Google Scholar
Wittocx, J. 2010. Finite Domain and Symbolic Inference Methods for Extensions of First-Order Logic. PhD thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium.Google Scholar
Wittocx, J., Denecker, M. and Bruynooghe, M. 2013. Constraint propagation for first-order logic and inductive definitions. ACM Transactions on Computational Logic. Accepted.Google Scholar
Wittocx, J., Mariën, M. and Denecker, M. 2010. Grounding FO and FO(ID) with bounds. Journal of Artificial Intelligence Research 38, 223269.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Compiling Input* FO(·) inductive definitions into tabled prolog rules for IDP3
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Compiling Input* FO(·) inductive definitions into tabled prolog rules for IDP3
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Compiling Input* FO(·) inductive definitions into tabled prolog rules for IDP3
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *