Skip to main content Accessibility help
×
Home

Theoretical Ecospace for Ecosystem Paleobiology: Energy, Nutrients, Biominerals, and Macroevolution

  • Andrew M. Bush (a1) and Sara B. Pruss (a2)

Abstract

Changes in nutrient cycles and energy fluxes (i.e., ecosystem dynamics) likely drove numerous trends and disruptions in the history of life. Advances in geochemistry offer great insights into paleoecosystem function, as does an understanding of the biogeochemical roles played by ancient organisms. A theoretical ecospace that describes the chemical exchanges between organisms and their environments is presented. Previous descriptions of ecospace principally described spatial and physical aspects of ecology; the new ecospace description broadens the concept to encompass a wider range of ecological processes that control abundance and diversity of fossil organisms. Organisms require materials from the environment for generating energy and building tissues, and these factors are broken down, ultimately specifying particular substances acquired from the environment. Different organisms require specific substances in different amounts depending on factors such as physiology, environmental conditions, etc.; thus, physiological ecospace describes an organism's sensitivity to ecosystem/earth system perturbations and trends. Several examples relating to organisms' requirements for skeletal minerals are reviewed, and a new analysis of extinction selectivity related to ocean acidification is presented. Selective extinction of heavily calcified metazoa is demonstrated to have occurred at least eight times during the Phanerozoic, including the early Cambrian, Frasnian (Late Devonian), and Aptian (Early Cretaceous). Multidimensional structure of ecospace occupation (e.g., correlations among ecological traits) strongly controls the effects of an extinction such that the same kill mechanism applied at different times will affect the ecological composition of the biosphere in a variety of ways.

Copyright

References

Hide All
Alroy, J., Aberhan, M., Bother, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321:97100.
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208:10951108.
Anbar, A. D., and Knoll, A. H. 2002. Proterozoic ocean chemistry and evolution: a bioorganic bridge? Science, 297:11371142.
Archer, D. 2005. Fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research, 110:16.
Archer, D., Kheshgi, H., and Maier-Reimer, E. 1997. Multiple timescales for neutralization of fossil fuel CO2 . Geophysical Research Letters, 24:405408.
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology, 19:372397.
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios, 32:131144.
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences, 34:127155.
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50:122.
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences of the United States of America, 99:68546859.
Beerling, D. J., and Royer, D. L. 2002. Reading a CO2 signal from fossil stomata. New Phytologist, 153:387397.
Blättler, C. L., Jenkyns, H. C., Reynard, L. M., and Henderson, G. M. 2011. Significant increases in global weathering during Oceanic Anoxic Events la and 2 indicated by calcium isotopes. Earth and Planetary Sciences Letters, 309:7788.
Bond, D., Wignall, P. B., and Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141:173193.
Boyce, C. K., and Lee, J.-E. 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of the Royal Society B, 277:34373443.
Boyce, C. K., and Lee, J.-E. 2011. Could land plant evolution have fed the marine revolution? Paleontological Research, 15:100105.
Boyer, D. L., and Droser, M. L. 2009. Palaeoecological patterns within the dysaerobic biofacies: examples from Devonian black shales of New York State. Palaeogeography, Palaeoclimatology, Palaeoecology, 276:206216.
Brasier, M., Green, O., and Shields, G. 1997. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, 25:303306.
Braun, A., Chen, J., Waloszek, D., and Maas, A. 2007. First Early Cambrian radiolaria, p. 143149. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society Special Publications 286, Geological Society of London, London.
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T. and Guex, J. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science, 325:11181121.
Bush, A. M., and Bambach, R. K. 2011. Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Sciences, 39:241269.
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology, 33:7697.
Bush, A. M., Bambach, R. K., and Erwin, D. H. 2011. Ecospace utilization during the Ediacaran radiation and the Cambrian eco-explosion. p. 111134. In Laflamme, M., Schiffbauer, J. D., and Dornbos, S. Q. (eds.), Quantifying the Evolution of Early Life: Numerical Approaches to the Evaluation of Fossils and Ancient Ecosystems. Springer, New York.
Bush, A. M., and Novack-Gottshall, P. M. 2012. Modelling the ecological–functional diversification of marine Metazoa on geological time scales. Biology Letters, 8:151155.
Caplan, M. L., and Bustin, R. M. 1999. Devonian–Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 148:187207.
Chen, D., Qing, H., and Li, R. 2005. The Late Devonian Frasnian–Famennian (F/F) biotic crisis: insights from δ13CCarb, δ13Corg and 87Sr/86Sr isotopic systematics. Earth and Planetary Science Letters, 235:151166.
Chen, D., Tucker, M. E., Shen, Y., Yans, J., and Prea, A. 2002. Carbon isotope excursions and sea-level change: implications for the Frasnian–Famennian biotic crisis. Journal of the Geological Society of London, 159:623626.
Clapham, M. E., and Payne, J. L. 2011. Acidification, anoxia, and extinction: a multiple regression analysis of extinction selectivity during the middle and late Permian. Geology, 39:10591062.
Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C., and Cooper, M. J. 2010. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science, 327:11141117.
Colosimo, A., Bralower, T. J., and Zachos, J. C. 2006. Evidence for lysocline shoaling at the Paleocene/Eocene Thermal Maximum on Shatsky Rise, Northwest Pacific. Proceedings of the Ocean Drilling Program, Scientific Results, 198:136.
Copper, P. 2002. Reef development at the Frasnian/ Famennian mass extinction boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 181:2765.
Courtillot, V., Kravchinsky, V. A., Quidelleur, X., Renne, P. R., and Gladkochub, D. P. 2010. Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events? Earth and Planetary Science Letters, 300:239245.
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, 107:1791117915.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science, 1:169192.
Dornbos, S. Q. 2006. Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237:225239.
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A., and Erwin, D. H. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biology, 6:e102.
Erba, E., Bottini, C., Weissert, H. J., and Keller, C. E. 2010. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event la. Science, 329:428432.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J. R. 2004. The evolution of modern eukaryotic phytoplankton. Science, 305:354360.
Fennel, K., Follows, M., and Falkowski, P.G. 2005. The coevolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. American Journal of Science, 305:526545.
Fine, M., and Tchernov, D. 2007. Scleractinian coral species survive and recover from decalcification. Science, 315:1811.
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W. 2011. The magnitude and duration of Late Ordovician–early Silurian glaciation. Science, 331:903906.
Finnegan, S., and Droser, M. L. 2008. Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology, 34:342359.
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences 109:68296834.
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology, 26:74102.
Gehling, J. G., and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.
Gharaie, M. H. M., Matsumoto, R., Racki, G., and Kakuwa, Y. 2007. Chemostratigraphy of Frasnian–Famennian transition: possibility of methane hydrate dissociation leading to mass extinction. Geological Society of America Special Paper, 424:109125.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. 2001. Effects of size and temperature on metabolic rate. Science, 293:22482251.
Glazier, D. S. 2005. Beyond the ‘3/4-power law’: variation in the intra–and interspecific scaling of metabolic rate in animals. Biological Reviews, 80:611662.
Grasby, S. E., Sanei, H., and Beauchamp, B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geosciences, 4:104107.
Greene, S. E., Martindale, R. C., Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A., and Berelson, W. M. 2012. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic–Jurassic boundary. Earth-Science Reviews, 113:7293.
Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y. 2005. Photic zone euxinia during the Permian–Triassic superanoxic event. Science, 307:706709.
Harper, H. E. J., and Knoll, A. H. 1975. Silica, diatoms, and Cenozoic radiolarian evolution. Geology, 3:175177.
Hautmann, M. 2006. Shell mineralogical trends in epifaunal Mesozoic bivalves and their relationship to seawater chemistry and atmospheric carbon dioxide concentration. Facies, 52:417433.
Hendy, A. J. W. 2009. The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology, 35:5162.
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H. S., and Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406:392395.
Hesselbo, S. P., Robinson, S.A., Surlyk, F., and Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon cycle perturbation: a link to initiation of massive volcanism. Geology, 30:251254.
Higgins, J. A., Fischer, W. W., and Schrag, D. P. 2009. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth and Planetary Science Letters, 284:2533.
Higgins, J. A., and Schrag, D. P. 2006. Beyond methane: towards a theory for the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters, 245:523537.
Hinojosa, J. L., Brown, S. T., Chen, J., DePaolo, D. J., Paytan, A., Shen, S.-Z., and Payne, J. L. 2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology, 40:743746.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., Hatziolos, M. E. 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318:17371742.
Hong, J., Cho, S.-H., Choh, S.-J., Woo, J., and Lee, D.-J. 2012. Middle Cambrian siliceous spongecalcimicrobe buildups (Daegi Formation, Korea): metazoan buildup constituents in the aftermath of the Early Cambrian extinction event. Sedimentary Geology, 253:4757.
Horita, J., Zimmermann, H., and Holland, H. D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66:37333756.
Joachimski, M. M., and Buggisch, W. 1993. Anoxic events in the late Frasnian—causes of the Frasnian–Famennian faunal crisis? Geology, 21:675678.
Joachimski, M. M., and Buggisch, W. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology, 30:711714.
Kasemann, S. A., Prave, A. R., Fallick, A. E., Hawkesworth, C. J., and Hoffman, K. H. 2010. Neoproterozoic ice ages, boron isotopes, and ocean acidification: implications for a snowball Earth. Geology, 38:775778.
Katz, M. E., Pak, D. K., Dickens, G. R., and Miller, K. G. 1999. The source and fate of massive carbon input during the latest Paleocene Thermal Maximum. Science, 286:15311533.
Kidder, D. L., and Erwin, D. H. 2001. Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109:509522.
Kiessling, W., and Simpson, C. 2010. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 2010:112.
Knoll, A. H. 2003a. Life on a Young Planet: the First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton.
Knoll, A. H. 2003b. Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54:329356.
Knoll, A. H. 2013. Systems paleobiology. Geological Society of America Bulletin, 125:313.
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative earth history and late Permian mass extinction. Science, 273:452457.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256:295313.
Knoll, A. H., and Fischer, W. W. 2011. Skeletons and ocean chemistry: the long view, p. 6782. In Gattuso, J. P. and Hansson, L. (eds.), Ocean Acidification. Oxford University Press, Oxford.
Kroecker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13:14191434.
Kroecker, K. J., Micheli, F., Gambi, M. C., and Martz, T. R. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 108:1451514520.
Leinfelder, R. R., Werner, W., Nose, M., Schmid, D. U., Krautter, M., Laternser, R., Takacs, M., and Hartmann, D. 1996. Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the Late Jurassic, p. 227248. In Reitner, J., Neuweiler, F., and Gunkel, F. (eds.), Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Göttinger Arbeiten zur Geologie und Paläontologie, Sb2, Göttingen.
Maldonado, M., Carmona, M. C., Uriz, M. J., and Cruzado, A. 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature, 401:785788.
Maliva, R. G., Knoll, A. H., and Siever, R. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. PALAIOS, 4:519532.
Martin, R. E. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia, 36:179193.
Marx, F. G., and Uhen, M. D. 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science, 327:993–96.
Marynowski, , Zatoń, L. M., Rakociński, M., Filipiak, P., Kurkiewicz, S., and Pearce, T. J. 2012. Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology, 346–347:6686.
Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, Paul R., Youbi, Nasrrddine, Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L., and Bellieni, G. 2004. Synchrony of the Central Atlantic magmatic province and the Triassic–Jurassic boundary climatic and biotic crisis. Geology, 32:973976.
McAlester, A. L. 1970. Animal extinctions, oxygen consumption, and atmospheric history. Journal of Paleontology, 44:405409.
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211:289297.
McInerney, F. A., and Wing, S. L. 2011. The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Science, 39:489516.
Müller, M., Mentel, M., Van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., Yu, R.-Y., Van Der Giezen, M., Tielens, A. G. M., and Martin, W. F. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiology and Molecular Biology Reviews, 76:444495.
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33:273294.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437:681686.
Pálfy, J., and Smith, P. L. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology, 28:747750.
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A. Jr., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., and Wang, S. C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences, 106:2427.
Payne, J. L., and Clapham, M. E. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences, 40:89111.
Payne, J. L., and Finnegan, S. 2006. Controls on marine animal biomass through geological time. Geobiology, 4:110.
Payne, J. L., Lehrmann, D. J., Follett, D., Seibel, M., Kump, L. R., Riccardi, A., Altiner, D., Sano, H., and Wei, J. 2007. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian–Triassic boundary events. Geological Society of America Bulletin, 119:771784.
Payne, J. L., Summers, M., Rego, B. L., Altiner, D., Wei, J., Yu, M., and Lehrmann, D. J. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology, 37:409425.
Payne, J. L., Turchyn, A. V., Paytan, A., Depaolo, D. P., Lehrmann, D. J., Yu, Y., and Wei, J. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 107:85438548.
Pearson, P. N., McMillan, I. K., Wade, B. S., Jones, T. D., Coxall, H. K., Bown, P. R., and Lear, C. H. 2008. Extinction and environmental change across the Eocene–Oligocene boundary in Tanzania. Geology, 36:179182.
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature, 454:626629.
Peters, S. E. 2013. Sepkoski's Online Genus Database. Retrieved January 1, 2013. http://strata.geology.wisc.edu/jack/.
Plotnick, R. E., Dornbos, S. Q., and Chen, J. 2010. Information landscapes and sensory ecology of the Cambrian radiation. Paleobiology, 36:303317.
Porter, S. M. 2007. Seawater chemistry and early carbonate biomineralization. Science, 316:1302.
Porter, S. M. 2010. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology, 8:256277.
Pörtner, H. O., Langenbuch, M., and Michaelidis, B. 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. Journal of Geophysical Research, 110:C09S10.
Pörtner, H. O., Langenbuch, M., and Reipschläger, A. 2004. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and Earth history. Journal of Oceanography, 60:705718.
Prasad, V., Strömberg, C. A. E., Alimohammadian, H., Sahni, A. 2005. Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310:11771180.
Pruss, S. B., and Bottjer, D. J. 2004, Early Triassic trace fossils of the Western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. PALAIOS, 19:551564.
Pruss, S. B., Finnegan, S., Fischer, W. W., Knoll, A. H. 2010. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia. PALAIOS, 25:7384.
Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T. Y., Reinfelder, J. R., Schofield, O., Morel, F. M. M., and Falkowski, P. G. 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 425:291294.
Racki, G. 1999. Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 154:107132.
Ratti, S., Knoll, A. H., and Giordano, M. 2011. Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans? Geobiology, 9:301312.
Ries, J. B., Stanley, S. M., and Hardie, L. A. 2006. Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology, 34:525528.
Roopnarine, P. 2006. Extinction cascades and catastrophe in ancient food webs. Paleobiology, 32:119.
Rowley, D. B. 2002. Rate of plate creation and destruction: 180 Ma to present. Geological Society of America Bulletin, 114:927933.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., and Bralower, T. J. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science, 327:12141218.
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363:1560.
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology, 37:115118.
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Science, 29:331364.
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A., and Vasiliev, Y. R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477:312316.
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by technically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:319.
Stanley, S. M., and Powell, M. G. 2003. Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology, 31:877880.
Stanley, S. M., Ries, J. B., and Hardie, L. A. 2005. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology, 33:593596.
Sterner, R. W., Elser, J. J., and Vitousek, P. 2002. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
Streel, M., Caputo, M. V., Loboziak, S., and Melo, J. H. G. 2000. Late Frasnian–Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth-Science Reviews, 52:121173.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., and Rey, S. S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429:542545.
Svensen, H., Planke, S., Polozov, A. G., Schimdbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Sciences Letters 277, 490500.
Talmage, S. C., and Gobler, C. J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107:1724617251.
Twitchett, R. J., and Wignall, P. B. 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 124:137151.
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall, Englewood Cliffs, New Jersey.
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21:125152.
Vermeij, G. J. 2004. Nature: An Economic History. Princeton University Press, Princeton.
Villéger, S., Novack-Gottshall, P. M., and Mouillot, D. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14:561568.
Ward, P. 2006. Out of Thin Air: Dinosaurs, Birds, and Earth's Ancient Atmosphere. Joseph Henry Press, Washington, D.C.
Wignall, P. B., and Twitchett, R. J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272:11551158.
Wilson, J. P. 2103. Modeling 400 million years of plant hydraulics, p. 175194. In Bush, A. M., Pruss, S. B., and Payne, J. L. (eds.), Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers 19. Yale Press, New Haven.
Wilson, J. P., and Knoll, A. H. 2010. A physiologically explicit morphospace for tracheidbased water transport in modern and extinct seed plants. Paleobiology, 36:335355.
Wood, R., and Zhuravlev, A. Y. 2012. Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons. Earth-Science Reviews, 115:249261.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D. 2005. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science, 308:16111615.
Zambito, J. J. Iv, Brett, C. E., and Baird, G. C. 2012. The late Middle Devonian (Givetian) global Taghanic biocrisis in its type area (northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes, p. 677703. In Talent, J. A. (ed.), Earth and Life. Springer, Dordrecht.
Zhang, X-G., and Pratt, B. R. 1994. New and extraordinary Early Cambrian sponge spicule assemblage from China. Geology, 22:4346.
Zhuravlev, A. Y., and Wood, R. A. 1996. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology, 24:311314.
Zhuravlev, A. Y., and Wood, R. A. 2008. Eve of biomineralization: controls on skeletal mineralogy. Geology, 36:923926.

Related content

Powered by UNSILO

Theoretical Ecospace for Ecosystem Paleobiology: Energy, Nutrients, Biominerals, and Macroevolution

  • Andrew M. Bush (a1) and Sara B. Pruss (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.