Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T03:57:51.783Z Has data issue: false hasContentIssue false

Progress in Greenhouse Climate Modeling

Published online by Cambridge University Press:  21 July 2017

Matthew Huber*
Affiliation:
Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907 USA. huberm@purdue.edu
Get access

Abstract

This article discusses past greenhouse climates with an emphasis on recent progress in the comparison of models and data in the Eocene. These past climates—about 10° warmer than modern—provide valuable lessons in the climate dynamics of a world with higher-than-modern greenhouse-gas concentrations, reduced temperature gradients, and a lack of polar ice. Some key points that emerge from this analysis are: 1) Past greenhouse climates are characterized by warmer-than-modern global mean temperatures and winter season warmth, as well as strong polar amplification of warming that generates weak meridional temperature gradients. 2) A trade-off exists between heat transport in a warmer world and a world with smaller temperature gradients; a range exists in which a warmer world with weak temperature gradients can transport as much heat as a cooler world with stronger gradients. 3) These features can be reproduced in models if global mean and tropical temperatures are allowed to increase significantly over modern values. 4) Local radiative-convective feedbacks play an important role, perhaps dominating over transport, or acting in conjunction with transport to maintain relatively warm, weak temperature gradient climates. 5) Past greenhouse climates appear to have many of the modern modes of variability from orbital to interannual. 6) Modeling efforts are most useful when done independently of proxy data; model output can then be compared with proxies to evaluate potential weaknesses in the model. 7) Model-data mismatch might be due to incorrect boundary or initial conditions or resolution, or to missing or incomplete representation of relevant physics. 8) Refinements and new developments in proxies for temperature and other variables offer much potential for discriminating among the next generation of modeled scenarios, thereby allowing a better understanding of the conditions under which greenhouse climates exist.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, D. S., Huber, M., Bousquet, G., and Walker, C. C. 2009a. High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model. Geophysical Research Letters, L05702. doi:10.1029/2008GL036703.CrossRefGoogle Scholar
Abbot, D. S., and Tziperman, E. 2008. A high latitude convective cloud feedback and equable climates. Quarterly Journal of the Royal Meteorological Society, doi:10.1002/qj.211.Google Scholar
Abbot, D. S., Walker, C. C., and Tziperman, E. 2009b. Can a convective cloud feedback help to eliminate winter and spring sea ice at high CO2 concentrations? Journal of Climatology, doi:/2009JCLI2854.Google Scholar
Allen, M. R., and Ingram, W. J. 2002. Constraints on future changes in the hydrological cycle. Nature, 419:224228.CrossRefGoogle Scholar
Alley, N. F., and Frakes, L. A. 2003. First known Cretaceous glaciation: Livingston Tillite Member of the Cadnaowie Formation, South Australia. Australian Journal of Earth Sciences, 50:139144.CrossRefGoogle Scholar
Ando, A., Huber, B. T., MacLeod, K. G., Ohta, T., and Khim, B.-K. 2009. Blake Nose stable isotopic evidence against the mid-Cenomanian glaciation hypothesis. Geology, 37:451454.CrossRefGoogle Scholar
Aziz, H., Hilgen, F. J., van Luijk, G. M., Sluijs, A., Kraus, M. J., Pares, J. M., and Gingerich, P. D. 2008. Astronomical climate control on paleosol stacking patterns in the upper Paleocene–lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geology, 36:531534.CrossRefGoogle Scholar
Bao, H., Koch, P. L., and Rumble, D. III. 1999. PaleoceneEocene climatic variation in western North America; evidence from the δ18O of pedogenic hematite. Geological Society of America Bulletin, 111:14051415.2.3.CO;2>CrossRefGoogle Scholar
Barker, P. F., Barrett, P. J., Cooper, A. K., and Huybrechts, P. 1999. Antarctic glacial history from numerical models and continental margin sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 150:247267.CrossRefGoogle Scholar
Barker, F., and Thomas, E. 2004. Origin, signature and palaeoclimate influence of the Antarctic Circumpolar Current. Earth Science Reviews, 66:143162.CrossRefGoogle Scholar
Barron, E. J. 1983. A warm, equable Cretaceous: the nature of the problem. Earth-Science Reviews, 19:305338.CrossRefGoogle Scholar
Barron, E. J. 1987. Eocene equator-to-pole surface ocean temperatures: A significant climate problem? Paleoceanography, 2:729732.CrossRefGoogle Scholar
Barron, E. J., Fawcett, P. J., Peterson, W. H., Pollard, D., and Thompson, S. L. 1995. A “simulation” of mid-Cretaceous climate. Paleoceanography, 10:953.CrossRefGoogle Scholar
Barron, E. J., and Peterson, W. H. 1991. The Cenozoic ocean circulation based on ocean general circulation model results, Palaeogeography Palaeoclimatology Palaeoecology, 83:128.CrossRefGoogle Scholar
Barron, E., Peterson, W., Pollard, D., and Thompson, S. 1993. Past climate and the role of ocean heat transport: Model simulations for the Cretaceous. Paleoceanography, 8:785798.CrossRefGoogle Scholar
Barron, E. J., Thompson, S. L., and Schneider, S.H. 1981. An ice-free Cretaceous? Results from climate model. Science, 212:501508.CrossRefGoogle ScholarPubMed
Beckmann, B, Flögel, S., Hofmann, P., Schulz, M. and Wagner, T. 2005. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response. Nature, 437:241244.CrossRefGoogle ScholarPubMed
Beerling, D., Berner, R. A., Mackenzie, F. T., Harfoot, M. B., and Pyle, J. A. 2009: Methane and the CH4-related greenhouse effect over the past 400 million years. American Journal of Science, 309:97113.CrossRefGoogle Scholar
Beerling, D., and Royer, D. 2011. Convergent Cenozoic CO2 history, Nature Geosciences, 4:418420.CrossRefGoogle Scholar
Beerling, D. J., Fox, A., Stevenson, D. S., and Valdes, P. J. 2011. Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proceedings of the National Academy of Science USA, 108:97709775.CrossRefGoogle ScholarPubMed
Berggren, W. A. and Prothero, D. R. 1992. Eocene–Oligocene climatic and biotic evolution: An overview, p. 128 In Prothero, D. R., and Berggren, W. A. (eds.). Eocene–Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, NJ.Google Scholar
Berry, E. W. 1922. A possible explanation of upper Eocene climates. Proceedings of the American Philosophical Society, 61:114.Google Scholar
Bice, K. L., Barron, E. J., and Peterson, W. H. 1997. Continental runoff and early Cenozoic bottom water sources. Geology, 25:51954.2.3.CO;2>CrossRefGoogle Scholar
Bice, K. L., Barron, E. J., and Peterson, W. H. 1998. Reconstruction of realistic Early Eocene paleobathymetry and ocean GCM sensitivity to specified ocean basin configuration, p. 212226 In Crowley, T. J., and Burke, K. C. (eds.). Tectonic Boundary Conditions for Climate Reconstructions. Oxford University Press, New York.Google Scholar
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K.-U., and Norris, R. D. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography, 21:PA2002. doi:10.1029/2005PA001203.CrossRefGoogle Scholar
Bice, K. L., Huber, B. T., and Norris, R. D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography, 18. doi:10.1029/2002PA000848.CrossRefGoogle Scholar
Bice, K. L., and Marotzke, J. 2001. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean. Journal of Geophysical Research, 106:1152911542.CrossRefGoogle Scholar
Bijl, P., Schouten, S., Sluijs, A., Reichart, G., Zachos, J., and Brinkhuis, H. 2009. Early Palaeogene temperature evolution of the southwest pacific ocean. Nature, 461:776779.CrossRefGoogle ScholarPubMed
Billups, K. and Schrag, D. 2003. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change. Earth and Planetary Science Letters, 209:181195.CrossRefGoogle Scholar
Bohaty, S.M., and Zachos, J. 2003. Significant southern ocean warming event in the late middle Eocene. Geology, 31:10171020.CrossRefGoogle Scholar
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J.-L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J. 2006. How well do we understand and evaluate climate change feedback processes? Journal of Climatology, 19:34453482.CrossRefGoogle Scholar
Boulila, S., Galbrun, B., Laskar, J., and Pälike, H. 2012. A ~9 myr cycle in Cenozoic δ13C record and long-term orbital eccentricity modulation: is there a link? Earth and Planetary Science Letters, 317–318:273281.Google Scholar
Brady, E.C., DeConto, R.M., and Thompson, S.L. 1998. Deep water formation and poleward ocean heat transport in the warm climate extreme of the Cretaceous (80 Ma). Geophysical Research Letters, 25:42054208.CrossRefGoogle Scholar
Brinkhuis, H, Schouten, S., Collinson, M. E., Sluijs, A., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K., and the Expedition 302 Scientists. 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 441:606609.CrossRefGoogle ScholarPubMed
Broecker, W. S., and Peng, T.-H. 1982. Tracers in the Sea. Lamont-Doherty Earth Observatory. Palisades, N. Y. Google Scholar
Bush, A. B. G. 1997. Numerical simulation of the Cretaceous Tethys Circumglobal Current. Science, 275:807–8.CrossRefGoogle ScholarPubMed
Bush, A. B. G., and Philander, S. G. H. 1997. The Late Cretaceous: simulation with a coupled ocean-atmosphere general circulation model. Paleoceanography, 12:495516.CrossRefGoogle Scholar
Caballero, R., and Langen, P. L. 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophysical Research Letters., 32, L02705. doi:10.1029/2004GL021581.CrossRefGoogle Scholar
Carter, R. M., Carter, L., and McCave, I. N. 1996. Current controlled sediment deposition from the shelf to the deep ocean: The Cenozoic evolution of circulation through the SW Pacific gateway. Geologische Rundschau, 87:438451.CrossRefGoogle Scholar
Christie-Blick, N., Mountain, G. S. and Miller, K. G. 1990. Seismic stratigraphic record of sea level change, p. 116140 In Sea-level Change. National Academy Press, Washington, D.C. Google Scholar
Clarke, L. J., and Jenkyns, H. C. 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 27:699702.2.3.CO;2>CrossRefGoogle Scholar
Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganopolsky, A., Goosse, H., Lohman, G., Lunkeit, F., Mohkov, I. I., Petoukhov, V., Stone, P., and Wang, Z. 2002. Earth System Models of Intermediate Complexity: Closing the gap in the spectrum of climate system models. Climate Dynamics, 18:579586.Google Scholar
Clement, A. C., Seager, R., Cane, M. A., and Zebiak, S. E. 1996. An ocean dynamical thermostat. J. Climate, 9:21902196.2.0.CO;2>CrossRefGoogle Scholar
CLIMAP Project members. 1976. The surface of the Ice-Age Earth, Science, 191:11311137.CrossRefGoogle Scholar
Corfield, R., and Norris, R. D. 1996. Deep water circulation in the Paleocene Ocean, p. 443456 In Knox, R. W. O'B., Corfield, R. M., and Dunay, R. E. (eds.). Correlation of the Early Paleogene in Northwest Europe. Geological Society of London Special Publications 101, London.CrossRefGoogle Scholar
Covey, C., and Barron, E. 1988. The role of ocean heat-transport in climatic-change. Earth-Science Reviews, 24:429445.CrossRefGoogle Scholar
Covey, C., Sloan, L. C., and Hoffert, M. I. 1996. Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Climatic Change, 32:165184.CrossRefGoogle Scholar
Coxall, H. K., Wilson, A., Palike, H., Lear, C. H., and Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433:5357.CrossRefGoogle ScholarPubMed
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M. P. 2003. Orbital climate forcing of 13C excursions in the late Paleocene early Eocene (chrons C24nC25n). Paleoceanography 18:PA1097.CrossRefGoogle Scholar
Cristini, L., Grosfeld, K., Butzin, M., and Lohmann, G. 2012. Influence of the opening of the Drake Passage on the Cenozoic Antarctic Ice Sheet: A modeling approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 339–341:6673.CrossRefGoogle Scholar
Crowley, T. J. 2000. CLIMAP SSTs re-revisited, Clim. Dyn., 16:241255.Google Scholar
Crowley, T. J., Short, D. A., Mengel, J. G., and North, G. R. 1986. Role of seasonality in the evolution of climate during the last 100 million years. Science, 231:579584.CrossRefGoogle ScholarPubMed
Crowley, T. J., and Zachos, J. C. 2000. Comparison of zonal temperature profiles for past warm time periods, p. 5076 In Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.). Warm Climates in Earth History, Cambridge University Press.Google Scholar
Danabasoglu, G. A. 2004. Comparison of global ocean circulation model solutions obtained with synchronous and accelerated integration methods. Ocean Modeling, 7:323341.CrossRefGoogle Scholar
Danabasoglu, G., McWilliams, J. C., and Large, W. G. 1996. Approach to equilibrium in accelerated global oceanic models. Journal of Climate, 9:10921110.2.0.CO;2>CrossRefGoogle Scholar
Davies, A., Kemp, A. E. S., and Pälike, H. 2011. Tropical ocean atmosphere controls on inter-annual climate variability in the Cretaceous Arctic. Geophysical Research Letters, 38:L03706.CrossRefGoogle Scholar
Davies, A., Kemp, A. E. S., Weedon, G. P., and Barron, J. A. 2012. El Niño–Southern Oscillation variability from the Late Cretaceous Marca Shale of California. Geology, 40:1518.CrossRefGoogle Scholar
De Boer, B., van de Wal, R., Bintanja, R., Lourens, L., and Tuenter, E. 2010. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Annals of Glaciology, 5:2333.CrossRefGoogle Scholar
DeConto, R.M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pollard, D., and Beerling, D. J. 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484:8791.CrossRefGoogle ScholarPubMed
DeConto, R. M., Hay, W. W., Thompson, S. L., and Bergengren, J. 1999. Late Cretaceous climate and vegetation interactions: The cold continental interior paradox, p. 391406 In Barrera, E. and Johnson, C. (eds.). Evolution of the Cretaceous Ocean/Climate System, Geological Society of America Special Paper 332, Boulder, CO.CrossRefGoogle Scholar
DeConto, R. M., and Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature, 421:245249.CrossRefGoogle ScholarPubMed
DeConto, R. M., Pollard, D., Wilson, P. A., Palike, H., Lear, C. H., and Pagani, M. 2008. Thresholds for Cenozoic bipolar glaciation. Nature, 455:652656.CrossRefGoogle ScholarPubMed
DeConto, R. M., Thompson, S. L., and Pollard, D. 2000. Recent advances in paleoclimate modeling: toward better simulations of warm paleoclimates, p. 2149 In Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.). Warm Climates in Earth History, Cambridge University Press.Google Scholar
D'Hondt, S., and Arthur, M. A. 1996. Late Cretaceous oceans and the cool tropic paradox. Science, 271:18381841.CrossRefGoogle Scholar
Dickens, G. R. 2011. Down the rabbit hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene–Eocene thermal maximum and other past hyperthermal events. Climate of the Past, 7:831846.CrossRefGoogle Scholar
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of Paleocene. Paleoceanography, 10:965971.CrossRefGoogle Scholar
Doney, S. C., Large, W. G., and Bryan, F. O. 1998. Surface ocean fluxes and water-mass transformation rates in the coupled Climate System Model. Journal of Climate, 9:14201441.2.0.CO;2>CrossRefGoogle Scholar
Dumitrescu, M., Brassell, S. C., Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S. 2006. Instability in tropical Pacific sea-surface temperatures during the early Aptian. Geology, 34:833836.CrossRefGoogle Scholar
Eberle, J. J., Fricke, H. C., Humphrey, J. D., Hackett, L., Newbrey, M. G., and Hutchison, J. H. 2010 Seasonal variability in Arctic temperatures during early Eocene time, Earth and Planetary Sciences Letters, 296:481486.CrossRefGoogle Scholar
Eldrett, J. S., Greenwood, D. R., Harding, D. R. I.C., and Huber, M. 2009. Increased seasonality through the Eocene to Oligocene transition in Northern high latitudes. Nature, 459:969974.CrossRefGoogle ScholarPubMed
Emanuel, K. A. 2002. A simple model of multiple climate regimes, Journal of Geophysical Research—Atmospheric, 107:4077. doi:10.1029/2001JD001002.Google Scholar
Fischer, A. G., and Roberts, L. T. 1991. Cyclicity in the Green River Formation (lacustrine Eocene) of Wyoming. Journal of Sedimentary Petrology, 61:11461154.Google Scholar
Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., and Beerling, D. J. 2008. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate. Nature Geosciences, 1:4348.CrossRefGoogle Scholar
Flögel, S., Wallmann, K., Poulsen, C. J., Zhou, J., Oschlies, A., Voigt, S., and Kuhnt, W. 2011. Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth and Planetary Science Letters, 305:371384.CrossRefGoogle Scholar
Forster, A., Schouten, S., Baas, M., and Sinninghe Damsté, J. S. 2007a. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 7:919922.CrossRefGoogle Scholar
Forster, A., Schouten, S., Moriya, K., Wilson, P. A., and Sinninghe Damsté, J. S. 2007b. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanography, 22. doi:10.1029/2006PA001349.CrossRefGoogle Scholar
Frakes, L. A., Alley, N. F., and Deynoux, M. 1995. Early Cretaceous ice rafting and climate Zonation in Australia. International Geology Review, 37:567583.CrossRefGoogle Scholar
Fricke, H. C. 2003. Investigation of early Eocene water-vapor transport and paleoelevation using oxygen isotope data from geographically widespread mammal remains. Geological Society of America Bulletin, 115:10881096.CrossRefGoogle Scholar
Fricke, H. C., Foreman, B. Z., and Sewall, J. O. 2009. Integrated climate model-oxygen isotope evidence for a North America monsoon during the Late Cretaceous. Earth and Planetary Science Letters, 29:1121.Google Scholar
Fricke, H. C., and Wing, S. L. 2004. Oxygen isotope and paleobotanical estimates of temperature and δ18O-Latitude gradients over North America during the early Eocene. American Journal of Science, 304:612635.CrossRefGoogle Scholar
Fu, R., Del Genio, A., Rossow, W. B., and Liu, W. T. 1992. Cirrus-cloud thermostat for tropical sea-surface temperatures tested using satellite data. Nature, 358:394397.CrossRefGoogle Scholar
Fu, Q., Johanson, C. M., Wallace, J. M., and Reichler, T. 2006. Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312:1179.CrossRefGoogle ScholarPubMed
Garric, G., and Huber, M. 2003. Quasi-decadal variability in paleoclimate records: Sunspot cycles or intrinsic oscillations? Paleoceanography, 18. doi:10.1029/2002PA000869.CrossRefGoogle Scholar
Gale, A. S., Hardenbol, J., Hathaway, B., Kennedy, W. J., Young, J. R., and Phansalkar, V. 2002. Global correlation of Cenomanian (Upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology, 30:291294.2.0.CO;2>CrossRefGoogle Scholar
Gale, A. S., Voigt, S., Sageman, B. B., and Kennedy, W. J. 2008. Eustatic sea-level record for the Cenomanian (Late Cretaceous)—extension to the Western Interior Basin, USA. Geology, 36:859862.CrossRefGoogle Scholar
Galeotti, S., von der Heydt, A., Huber, M., Bice, D., Dijkstra, H., Jilbert, T., Lanci, L., and Reichart, G.-J. 2010a. Evidence for active El Niño Southern Oscillation variability in the late Miocene greenhouse climate. Geology, 38:419422.CrossRefGoogle Scholar
Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J. C., Monechi, S., Morelli, G., and Lourens, L. 2010b. Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. 2010. Earth and Planetary Sciences Letters, 290:192200.CrossRefGoogle Scholar
Gasson, E., Siddall, M., Lunt, D. J., Rackham, O. J. L., Lear, C. H., and Pollard, D. 2012. Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years. Review of Geophysics, 50, RG1005. doi:10.1029/2011RG000358.CrossRefGoogle Scholar
Gent, P. R., Bryan, F. O., Danabasoglu, G., Doney, S. C., Holland, W.R., Large, W. G., and McWilliams, J. C. 1998. The NCAR Climate System Model global ocean component. Journal of Climate, 11:12871306.2.0.CO;2>CrossRefGoogle Scholar
Goldner, A., Huber, M., and Caballero, R. Does Antarctica glaciation cool the world? Climate of the Past Discussions, submitted.Google Scholar
Greenwood, D. R., Basinger, J. R., and Smith, R. Y. 2010. How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38:1518.CrossRefGoogle Scholar
Greenwood, D. R., and Wing, S. L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology, 23:10441048.2.3.CO;2>CrossRefGoogle Scholar
Handoh, I. C., Bigg, G. R., Jones, E. J. W., and Inoue, M. 1999. An ocean modeling study of the Cenomanian Atlantic: equatorial paleo-upwelling, organic-rich sediments and the consequences for a connection between the proto-North and South Atlantic. Geophysical Research Letters, 26:223226.CrossRefGoogle Scholar
Handoh, I. C., Bigg, G. R., and Jones, E. J. W. 2003. Evolution of upwelling in the Atlantic Ocean Basin, Palaeogeography Palaeoclimatology Palaeoecology, 202:3158.CrossRefGoogle Scholar
Haney, R. L. 1971. Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1:241248.2.0.CO;2>CrossRefGoogle Scholar
Harding, I. C., Charles, A. J., Marshall, J. E. A., Palike, H., Roberts, A. P., Wilson, P. A., Jarvis, E., Thorne, R., Morris, E., Moremon, R., Pearce, R. B., and Akbari, S. 2011. Sea-level and salinity fluctuations during the Paleocene–Eocene thermal maximum in Arctic Spitsbergen. Earth and Planetary Sciences Letters, 303:97107.CrossRefGoogle Scholar
Hartmann, D. L., and Michelsen, M. L. 1993. Large-scale effects on the regulation of tropical sea-surface temperature. Journal of Climatology, 6:20492062.2.0.CO;2>CrossRefGoogle Scholar
Hartmann, D. L., and Michelsen, M. L. 2002. No evidence for iris. Bulletin of the American Meteorological Society, 83:49254.2.3.CO;2>CrossRefGoogle Scholar
Hay, W. W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29:725753.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235:11561167.CrossRefGoogle ScholarPubMed
Hay, W. W., and Southam, J. R. 1977. Modulation of marine sedimentation by the continental shelves, p. 569604 In Anderson, N. R., and Malahoff, A. (eds.). The Fate of Fossil Fuel CO2 in the Oceans. Marine Science Series, 6. Plenum Press, New York.CrossRefGoogle Scholar
Head, J. J., Bloch, J. I., Hastings, A. K., Bourque, J. R., Cadena, E. A., Herrera, F., Polly, P. D., and Jaramillo, C. A. 2009. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457:715718.CrossRefGoogle ScholarPubMed
Heinemann, M., Jungclaus, J. H., and Marotzke, J. 2009. Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM. Climate of the Past, 5:785802.CrossRefGoogle Scholar
Heinze, C. and Crowley, T. J. 1997. Sedimentary response to gateway circulation changes. Paleoceanography, 12:742754.CrossRefGoogle Scholar
Herman, A.B., and Spicer, R. A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature, 380:330333.CrossRefGoogle Scholar
Herold, N. K., Huber, M., Greenwood, D. R., Müller, R. D., and Seton, M. 2011a. Early to middle Miocene monsoon climate in Australia. Geology, 39:36.CrossRefGoogle Scholar
Herold, N.K., Müller, D., and Huber, M. 2011b. Insights into Miocene ocean circulation from a coupled climate model: Part I Atmospheric Circulation, Journal of Climate, 24:63536372.CrossRefGoogle Scholar
Herold, N., Huber, M., Müller, R.D. and Seton, M. Modelling the Miocene climatic optimum: ocean circulation. 2012. Paleoceanography, 27:PA1209. doi:10.1029/2010PA002041.CrossRefGoogle Scholar
Higgins, J. A., and Schrag, D. P. 2006. Beyond methane: towards a theory for the Paleocene–Eocene thermal maximum. Earth and Planetary Sciences Letters, 245:523537.CrossRefGoogle Scholar
Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E. G., Baker, J. A., Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., Schouten, S., Zachos, J. C., and Pancost, R. D. 2009. Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology, 37:99102.CrossRefGoogle Scholar
Hotinski, R. M., and Toggweiler, J. R. 2003. Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates, Paleoceanography, 18. doi: 10.10.1029/2001PA000730.Google Scholar
Huber, M. 2008. A hotter greenhouse? Science, 321:353354.CrossRefGoogle ScholarPubMed
Huber, M. 2009. Snakes tell a torrid tale. Nature, 457:669671.CrossRefGoogle Scholar
Huber, M., Brinkhuis, H., Stickley, C. E., Doos, K., Sluijs, A, Warnaar, J., Schellenberg, S. A., and Williams, G. L. 2004. Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters: Paleoceanography, 19, PA4026.CrossRefGoogle Scholar
Huber, M., and Caballero, R. 2003. Eocene El Nino: Evidence for robust tropical dynamics in the “hothouse.” Science, 299:877–88.CrossRefGoogle ScholarPubMed
Huber, M., and Goldner, A. 2011. Eocene monsoons. Journal of Asian Earth Sciences, 44:323.CrossRefGoogle Scholar
Huber, M., and Nof, D. 2006. The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene. Palaeogeography Palaeoclimatology Palaeoecology, 231:928.CrossRefGoogle Scholar
Huber, B. T., Norris, R. D., and MacLeod, K. G. 2002. Deep sea paleotemperature record of extreme warmth during the Cretaceous Period. Geology, 30:123126.2.0.CO;2>CrossRefGoogle Scholar
Huber, M., and Sloan, L. C. 1999. Warm climate transitions: a general circulation modeling study of the Late Paleocene thermal maximum (~56 Ma). Journal of Geophysical Research, 104:1663316655.CrossRefGoogle Scholar
Huber, M., and Sloan, L. C. 2000. Climatic responses to tropical sea surface temperature changes on a “greenhouse” Earth. Paleoceanography, 15:443450.CrossRefGoogle Scholar
Huber, M., and Sloan, L. C. 2001. Heat transport, deep waters, and thermal gradients. Geophysical Research Letters, 28:34813484.CrossRefGoogle Scholar
Huber, M., Sloan, L. C., and Shellito, C. 2003. Early Paleogene oceans and climate: A fully coupled modelling approach using NCAR's CSM, p. 2547 In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.). Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369, Boulder, CO.CrossRefGoogle Scholar
Hutchinson, J. H. 1982. Turtle, crocodilian, and champsosaur diversity changes in the Cenozoic of the north-central region of western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 37:149164.CrossRefGoogle Scholar
Ivany, L. C., Brey, T., Huber, M., Buick, D. P., and Schöne, B. R. 2011. El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica, Geophysical Research Letters, 38, L16709, doi:10.1029/2011GL048635.CrossRefGoogle Scholar
Ivany, L. C., Lohmann, K. C., Blake, D. B., Hasiuk, F., Aronson, R. B., Glass, A., and Moody, R. 2008. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica, Geological Society of America Bulletin, 120:659678.CrossRefGoogle Scholar
Jaramillo, C. A., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M. J., de la Parra, F., Morón, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H., Navarrete, R., Parra, F., Alvarán, M., Osorno, J., Crowley, J. L., Valencia, V., and Vervoort, J. 2010. Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation. Science, 330:957961 doi:10.1126/science.1193833.CrossRefGoogle ScholarPubMed
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world: Philosophical Transactions of the Royal Society, 361:18851916.CrossRefGoogle ScholarPubMed
Jenkyns, H. C., Forster, A., Schouten, S., Sinninge Damsté, J. S. 2004. Higher temperatures in the Late Cretaceous Arctic Ocean. Nature, 432:888892.CrossRefGoogle Scholar
Jenkyns, H., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J. 2012. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 8:215226.CrossRefGoogle Scholar
Katz, M. E., Cramer, B. S., Toggweiler, J. R., Esmay, G., Liu, C., Miller, K. G., Rosenthal, Y., Wade, B. S., and Wright, J. D. 2011. Impact of Antarctic circumpolar current development on late Paleogene ocean structure. Science, 332:10761079.CrossRefGoogle ScholarPubMed
Kennett, J. P. 1977. Cenozoic evolution of Antarctic glaciations, the circum-Antarctic ocean and their impact on global paleoceanography. Journal of Geophysical Research, 82:38433860.CrossRefGoogle Scholar
Kennett, J. P., Houtz, R. E., Andrew, P. B., Edwards, A. R., Gostin, V. A., Hajos, M., Hampton, M., Jenkins, D. G., Margolis, S. V., Ovenshine, A. F., and Perch-Nielsen, K. 1975. Cenozoic paleoceanography in the southwest Pacific Ocean, Antarctic glaciation and the development of the Circum-Antarctic current. Initial Reports of the Deep Sea Drilling Project, 29:11551169.Google Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353:225229.CrossRefGoogle Scholar
Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damsté, J. S. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta, 72:11541173.CrossRefGoogle Scholar
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koc, N., Hopmans, E. C., and Sinninghe Damsté, J. S. 2010. New indices and calibrations derived from the distribution of crenarchaeal isopreoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta, 74:46394654.CrossRefGoogle Scholar
Kirk-Davidoff, D. B., and Lamarque, J.-F. 2008. Maintenance of polar stratospheric clouds in a moist stratosphere. Climate of the Past, 4:6978.CrossRefGoogle Scholar
Kirk-Davidoff, D. B., Schrag, D. P., and Anderson, J. G. 2002. On the feedback of stratospheric clouds on polar climate. Geophysical Research Letters, 29.Google Scholar
Kleypas, J. A., Danabasoglu, G., and Lough, J. M. 2008. Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events, Geophysical Research Letters, 35, L03613. doi:10.1029/2007GL032257.CrossRefGoogle Scholar
Koch, J. T., and Brenner, R. L. 2009. Evidence for glacioeustatic control of large, rapid sea-level fluctuations during the Albian-Cenomanian: Dakota formation, eastern margin of western interior seaway, USA. Cretaceous Research, 30:411423.CrossRefGoogle Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature, 358:319322.CrossRefGoogle Scholar
Kowalski, E. A., and Dilcher, D. L. 2002. Warmer temperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences USA, 100:167170.CrossRefGoogle ScholarPubMed
Kürschner, W. M., Kvacek, Z., and Dilcher, D. L. 2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences USA, 105:449453.CrossRefGoogle ScholarPubMed
Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., and Paytan, A. 2003. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography, 18.Google Scholar
Lambeck, K. and Chappell, J. 2001. Sea level change through the last glacial cycle. Science, 292:679686.CrossRefGoogle ScholarPubMed
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y. 2008. Cooling and ice growth across the Eocene–Oligocene transition. Geology, 36:251254.CrossRefGoogle Scholar
Lear, C. H., Elderfield, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperature sand global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287:269272.CrossRefGoogle Scholar
Leckie, R. M., Bralower, T. J., and Cashman, R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17. doi:10.1029/2001PA000623.CrossRefGoogle Scholar
Lenz, O. K., Wilde, V., and Riegel, W. 2010. A 600 k.y. record of El Niño-Southern Oscillation (ENSO): evidence for persisting teleconnections during the middle Eocene greenhouse climate of Central Europe. Geology, 38:627630.CrossRefGoogle Scholar
Lenz, O. K., Wilde, V., and Riegel, W. 2011. Short-term fluctuations in vegetation and phytoplankton during the middle Eocene greenhouse climate: a 640-kyr record from the Messel oil shale (Germany). International Journal of Earth Sciences, 100:18511879.CrossRefGoogle Scholar
Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J., and Pancost, R. D. 2011. High sea-surface temperatures during the Early Cretaceous Epoch. Nature Geoscience, 4:169172.CrossRefGoogle Scholar
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S., Leckie, R., and Pearson, A. 2009. Global cooling during the Eocene–Oligocene climate transition, Science, 323:11871190.CrossRefGoogle ScholarPubMed
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I. 2005. Astronomical pacing of late Palaeocene to early Eocene hyperthermal events. Nature, 435:10831087.CrossRefGoogle Scholar
Lowenstein, T. K., and Demicco, R. V. 2006. Elevated Eocene atmospheric CO2 and its subsequent decline. Science, 313:1928.CrossRefGoogle ScholarPubMed
Lunt, D. J., Dunkley-Jones, T., Heinemann, M., Huber, M., LeGrande, A., Winguth, A., Loptson, C., Marotzke, J., Tindall, J., Valdes, P., and Winguth, C. 2012. A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations: EoMIP. Climate of the Past Discussions, 8:12291273.Google Scholar
Lunt, D. J., Valdes, P. J., Dunkley-Jones, T., Ridgwell, A., Haywood, A. M., Schmidt, D. N., Marsh, R., and Maslin, M. 2010. CO2-driven ocean circulation changes as an amplifier of Paleocene–Eocene thermal maximum hydrate destabilization. Geology, 38:875878.CrossRefGoogle Scholar
Lyle, M. 1997. Could early Cenozoic thermohaline circulation have warmed the poles? Paleoceanography, 12:161167.CrossRefGoogle Scholar
Lyle, M., Barron, J., Bralower, T. J., Huber, M., Olivarez-Lyle, A., Ravelo, A. C., Rea, D. K., and Wilson, P. A. 2008. The Pacific Ocean and the Cenozoic evolution of climate. Review of Geophysics. doi:10.1029/2005RG000190.CrossRefGoogle Scholar
Lyle, M., Olivarez-Lyle, A., Backman, J., and Tripati, A. 2005. Biogenic sedimentation in the Eocene equatorial Pacific—the stuttering greenhouse and Eocene carbonate compensation depth, p. 135 In Wilson, P. A., Lyle, M., and Firth, J. V. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results.CrossRefGoogle Scholar
Machls, M. L., Olsen, P. E., Christie-Blick, N., and Hemming, S. R. 2008. Spectral analysis of the lower Eocene Wilkins Peak Member, Green River Formation, Wyoming: Support for Milankovitch cyclicity, Earth and Planetary Science Letters, 268:6475.CrossRefGoogle Scholar
MacLeod, K. G., Huber, B. T., and Isaza-Londoño, C. 2005. North Atlantic warming during “global” cooling at the end of the Cretaceous. Geology, 33:437440.CrossRefGoogle Scholar
MacLeod, K. G., Huber, B. T., Pletsch, T., Röhl, U., and Kucera, M. 2001. Maastrichtian foraminiferal and paleoceanographic changes on Milankovitch time scales. Paleoceanography, 16:133154.CrossRefGoogle Scholar
MacLeod, K. G., Isaza-Londoño, C., Martin, E. E., Jimenez Berrocoso, A., and Basak, C. 2011. Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval. Nature Geoscienceence, 779782.Google Scholar
MacLeod, K. G., Londoño, C. I., Martin, E. E., Jimenez Berrocoso, A., and Basak, C. 2011. Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval. Nature Geosciences, 4:779782.CrossRefGoogle Scholar
Markwick, P. J. 1994. “Equability,” continentality, and Tertiary “climate”: The crocodilian perspective. Geology, 22:613616.2.3.CO;2>CrossRefGoogle Scholar
Markwick, P. J. 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: Implications for using palaeontological data in reconstructing palaeoclimate, Palaeogeography Palaeoclimatology Palaeoecology, 137:205271.CrossRefGoogle Scholar
Markwick, P. J. 2007. The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons, p. 251312 In Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N. (eds.). Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. The Micropalaeontological Society, Special Publications. The Geological Society of London.CrossRefGoogle Scholar
McElwain, J. C., Wade-Murphy, J., and Hesselbo, S. P. 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature, 435:479482.CrossRefGoogle ScholarPubMed
McGowran, B., Li, Q., Cann, J., Padley, D., McKirdy, D. M., and Shafik, S. 1997. Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene. Palaeogeography Palaeoclimatology Palaeoecology, 136:1940.CrossRefGoogle Scholar
Miall, A. D. 1992. Exxon global cycle chart: An event for every occasion? Geology, 20:787790.2.3.CO;2>CrossRefGoogle Scholar
Mikolajewicz, U., Maierreimer, E., Crowley, T. J., and Kim, K. Y. 1993. Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography, 8:409426.CrossRefGoogle Scholar
Mikolajewicz, U., and Crowley, T. J. 1997. Response of a coupled ocean/energy balance model to restricted flow through the Central American isthmus. Paleoceanography, 12:429441.CrossRefGoogle Scholar
Miller, K. G., Janacek, T. R., Katz, M. E., and Keil, D. J. 1987. Abyssal circulation and benthic foraminiferal changes near the Paleocene/Eocene Boundary. Paleoceanography, 2:741761.CrossRefGoogle Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F. 2005a. The Phanerozoic record of sea-level change. Science, 310:12931298.CrossRefGoogle ScholarPubMed
Miller, K. G., Mountain, G. S., Wright, J. D., and Browning, J. V. 2011. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24:4053.CrossRefGoogle Scholar
Miller, K. G., Wright, J. D., and Browning, J. V. 2005. Visions of ice sheets in a greenhouse world, p. 215231 In Paytan, A., and De La Rocha, C., (eds.). Ocean Chemistry Throughout the Phanerozoic. Marine Geology Special Issue 217.Google Scholar
Miller, R. L. 1997. Tropical thermostats and low cloud cover. Journal of Climate, 409440.Google Scholar
Mitrovica, J. X., Gomez, N., Morrow, E., Hay, C., Latychev, K., and Tamisiea, M. E. 2011. On the robustness of predictions of sea level fingerprints. Geophysical Journal International, 187:729742.CrossRefGoogle Scholar
Moore, T. C. Jr., Backman, J., Raffi, I., Nigrini, C., Sanfilippo, A., Palike, H., and Lyle, M. 2004. Paleogene tropical Pacific: Clues to circulation, productivity, and plate motion. Paleoceanography, 19.CrossRefGoogle Scholar
Moriya, K., Wilson, P. A., Friedrich, O., Erbacher, J., Kawahata, H. 2010. Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from the mid-Cenomanian tropics on Demerara Rise. Geology, 7:615618.Google Scholar
Najjar, R. G., Nong, G. T., Seidov, D., and Peterson, W. H. 2002. Modeling geographic impacts on early Eocene ocean temperature. Geophysical Research Letters, 29, doi:10.1029/2001GL014–438.CrossRefGoogle Scholar
Newell, R. E. 1979. Climate and the ocean. American Journal of Science, 67:405416.Google Scholar
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. 2007. Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology, 35:699702.CrossRefGoogle Scholar
Nilsson, J., Broström, G. and Walin, G. 2003. The thermohaline circulation and vertical mixing: does weaker density stratification give stronger overturning? Journal of Physical Oceanography, 33:27812795.2.0.CO;2>CrossRefGoogle Scholar
Nisancioglu, K. H., Raymo, M. E., and Stone, P. H. 2003. Reorganization of Miocene deep water circulation in response to shoaling of the Central American Seaway. Paleoceanography, 18. doi:10.1029/2002PA000767, 2003.CrossRefGoogle Scholar
Nof, D. 2000. Does the wind control the import and export of the South Atlantic? Journal of Physical Oceanography, 30:26502667.2.0.CO;2>CrossRefGoogle Scholar
Nof, D., and Van Gorder, S. 2002. Did an open Panama Isthmus correspond to an invasion of Pacific water into the Atlantic? Journal of Physical Oceanography, 33:13241336.2.0.CO;2>CrossRefGoogle Scholar
Nong, G. T., Najjar, R. G., Seidov, D., and Peterson, W. H. 2000. Simulation of ocean temperature change due to the opening of the Drake Passage. Geophysical Research Letters, 27:26892692.CrossRefGoogle Scholar
Norris, R. D., Bice, K. L., Magno, E. A., and Wilson, P. A. 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology, 30:299302.2.0.CO;2>CrossRefGoogle Scholar
Norris, R. D. and Wilson, P. A. 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology, 26:823826.2.3.CO;2>CrossRefGoogle Scholar
Omta, A. W. and Dijkstra, H. A. 2003. A physical mechanism for the Atlantic-Pacific flow reversal in the early Miocene. Global and Planetary Change, 788:112.Google Scholar
Otto-Bliesner, B. L., and Upchurch, G. R. 1997. Vegetation-induced warming of high-latitude regions during the late Cretaceous period. Nature, 385:804807.CrossRefGoogle Scholar
Pagani, M., Caldeira, K., Archer, D., and Zachos, J. C. 2006a. An ancient carbon mystery. Science, 314:15561557.CrossRefGoogle ScholarPubMed
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W., Krishnan, S., and DeConto, R. M. 2011. The Role of Carbon Dioxide during the Onset of Antarctic Glaciation. Science, 334:12611264.CrossRefGoogle ScholarPubMed
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J. S., Dickens, G. R., and the IODP Expedition 302 Scientists. 2006b. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature, 442:671675.CrossRefGoogle ScholarPubMed
Pagani, M., Zachos, J., Freeman, K. H., Bohaty, S., and Tipple, B. 2005. Marked change in atmospheric carbon dioxide concentrations during the Oligocene. Science, 309:600603.CrossRefGoogle Scholar
Pälike, H., Frazier, J., and Zachos, J. C. 2006a. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quaternary Science Reviews, 25:31383149.CrossRefGoogle Scholar
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S. 2006b. The heartbeat of the Oligocene climate system. Science, 314:18941898.CrossRefGoogle ScholarPubMed
Panchuk, K., Ridgwell, A., and Kump, L. R. 2008. Sedimentary response to Paleocene–Eocene thermal maximum carbon release: a model-data comparison. Geology, 36:315318.CrossRefGoogle Scholar
Parrish, J. T. 1998. Interpreting Pre-Quaternary Climate from the Geologic Record, Columbia University Press, 348pp.Google Scholar
Pearson, P., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413:481487.CrossRefGoogle ScholarPubMed
Pearson, P. N., Foster, G. L., and Wade, B. S. 2009. Atmospheric carbon dioxide through the Eocene—Oligocene climate transition. Nature, 461:11101113.CrossRefGoogle ScholarPubMed
Pearson, P. N., McMillan, I. K., Wade, B. S., Jones, T. D., Coxall, H. K., Bown, P. R., and Lear, C. H. 2008. Extinction and environmental change across the Eocene—Oligocene boundary in Tanzania. Geology, 36:179182.CrossRefGoogle Scholar
Pearson, P. N., and Palmer, M. R. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406:695699.CrossRefGoogle ScholarPubMed
Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S. 2007. Stable warm tropical climate through the Eocene Epoch. Geology, 35:211214.CrossRefGoogle Scholar
Peters, R. B., and Sloan, L. C. 2000. High concentrations of greenhouse gases and polar stratospheric clouds: A possible solution to high-latitude faunal migration at the latest Paleocene thermal maximum. Geology, 28:979982.2.0.CO;2>CrossRefGoogle Scholar
Pierrehumbert, R. T. 1995. Thermostats, radiator fins, and the local runaway greenhouse. Journal of Atmospheric Sciences, 17841806.Google Scholar
Pierrehumbert, R. T. 2002. The hydrologic cycle in deep time climate problems. Nature, 419:191198.CrossRefGoogle ScholarPubMed
Poole, I., Cantrill, D., and Utescher, T. 2005. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary. Palaeogeography Palaeoclimatology, Palaeoecology, 222:95121.CrossRefGoogle Scholar
Poulsen, C. J., Barron, E. J., Arthur, M. A., and Peterson, W. H. 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography, 16.Google Scholar
Poulsen, C. J., Barron, E. J., Peterson, W. H., and Wilson, P. A. 1999. A reinterpretation of mid-Cretaceous shallow marine temperatures through model-data comparison. Paleoceanography, 14:679697.CrossRefGoogle Scholar
Poulsen, C. J., Pollard, D., and White, T. S. 2007. GCM simulation of the δ18O content of continental precipitation in the middle Cretaceous: a model-proxy comparison. Geology, 35:199202.CrossRefGoogle Scholar
Poulsen, C. J., Seidov, D., Barron, E. J., and Peterson, W. H. 1998. The impact of paleogeographic evolution on the surface oceanic simulation and the marine environment within the mid-Cretaceous Tethys. Paleoceanography, 13:546559.CrossRefGoogle Scholar
Power, S. B., and Kleeman, R. 1994. Surface flux parameterisation and the response of OGCMs to high latitude freshening. Tellus, 46:8695.CrossRefGoogle Scholar
Price, G. D. 1999. The evidence and implications of polar ice during the Mesozoic. Earth Science Reviews, 48:183210.CrossRefGoogle Scholar
Price, G. D., and Nunn, E. V. 2010. Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: transient glacial temperatures during the Cretaceous greenhouse. Geology, 38:251254.CrossRefGoogle Scholar
Prothero, D. R., Ivany, L. C., and Nesbitt, E. A. (EDS.). 2003. From Greenhouse to Icehouse: the Marine Eocene—Oligocene Transition. Columbia University Press, New York.Google Scholar
Ramanathan, V., and Collins, W. 1991. Thermodynamic Regulation of Ocean Warming by Cirrus Clouds Deduced from Observations of the 1987 El Nino. Nature, 2732.Google Scholar
Rind, D., and Chandler, M. 1991. Increased ocean heat transports and warmer climate. Journal of Geophysical Research, 96:74377461.CrossRefGoogle Scholar
Ripepe, M., Roberts, L. T., and Fischer, A. G. 1991. ENSO and sunspot cycles in varved Eocene oil shales from image analysis. Journal of Sedimentary Petrology, 61:11551163.Google Scholar
Roberts, C. D., LeGrande, A. N., and Tripati, A. K. 2009. Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth and Planetary Science Letters, 286:576585.CrossRefGoogle Scholar
Rohl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C. 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochemistry Geophysics Geosystems, 8:Q12002.CrossRefGoogle Scholar
Royer, D. L., Berner, R. A., Montanez, I. P., Tabor, N. J., and Beerling, D. J. 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today, 14:410.2.0.CO;2>CrossRefGoogle Scholar
Sageman, B. B., Meyers, S. R., and Arthur, M. A. 2006. Orbital time scale and new C-isotope record for Cenomanian–Turonian stratotype. Geology, 34:1251128.CrossRefGoogle Scholar
Scher, H. D., and Martin, E. E. 2006. Timing and climatic consequences of the opening of Drake Passage. Science, 312:428430.CrossRefGoogle ScholarPubMed
Schmidt, G. A. 1999. Forward modeling of carbonate proxy data from planktonic foraminifera using oxygen isotope tracers in a global ocean model. Paleoceanography, 14:482497.CrossRefGoogle Scholar
Schouten, S., Forster, A., Panoto, F. E., and Sinninghe Damsté, J. S. 2007. Towards the calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. Organic Geochemistry 38:15371546.CrossRefGoogle Scholar
Schouten, S., Hopmans, E., Forster, A., van Breugel, Y., Kuypers, M. M. M., and Sinninghe Damsté, J. S. 2003. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archael membrane lipids. Geology, 31:10691072.CrossRefGoogle Scholar
Schrag, D. P. 1999. Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures, Chemical Geology, 161:215224.CrossRefGoogle Scholar
Schuur, E. A.G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience, 58:701714.CrossRefGoogle Scholar
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkanp, T. E. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459:556559.CrossRefGoogle ScholarPubMed
Seager, R., Kushnir, Y., and Cane, M. A. 1995. On heat flux boundary conditions for ocean models. Journal of Physical Oceanography, 25:32193230.2.0.CO;2>CrossRefGoogle Scholar
Seager, R., Ting, M. F., Held, I. M., Kushnir, Y., Lu, J., Vecchi, G., Huang, H. P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., and Naik, N. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316:11811184.CrossRefGoogle ScholarPubMed
Seager, R., and Vecchi, G. A. 2010: Greenhouse warming and the 21st Century hydroclimate of southwestern North America. Proceedings of the National Academy of Sciences USA. 107:2127721282.CrossRefGoogle ScholarPubMed
Sellwood, B.W., and Valdes, P. J. 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology, 190:269287.CrossRefGoogle Scholar
Sewall, J. O., and Sloan, L. C. 2001. Equable Paleogene climates: the result of a stable, positive Arctic Oscillation? Geophysical Research Letters, 28:36933695.CrossRefGoogle Scholar
Sewall, J. O., and Sloan, L. C. 2004. Less ice, less tilt, less chill: the influence of a seasonally ice-free Arctic Ocean and changing obliquity on early Paleogene climate. Geology, 32:477480.CrossRefGoogle Scholar
Sewall, J. O., and Sloan, L. C. 2006. Come a little bit closer: a high-resolution climate study of the early Paleogene Laramide foreland. Geology, 34:8184.CrossRefGoogle Scholar
Sewall, J. O., Sloan, L. C., Huber, M., and Wing, S. 2000. Climate sensitivity to changes in land surface characteristics: Global and Planetary Change, 26:445465.CrossRefGoogle Scholar
Sexton, P. F., Wilson, P. A., and Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation: “glassy” versus “frosty.” Geochemistry Geophysics Geosystems 7. doi:10.1029/2006GC001291.CrossRefGoogle Scholar
Shackleton, N. J., and Boersma, A. 1981. The climate of the Eocene ocean. Journal of the Geological Society of London, 138:153157.CrossRefGoogle Scholar
Shellito, C. J., Lamarque, J.-F., and Sloan, L. C. 2009. Early Eocene Arctic climate sensitivity to pCO2 and basin geography. Geophysical Research Letters, 36:L09707.CrossRefGoogle Scholar
Shellito, C., and Sloan, L. C. 2006a. Reconstructing a lost Eocene Paradise, Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum. Global and Planetary Change, 50:117.CrossRefGoogle Scholar
Shellito, C., and Sloan, L. C. 2006b. Reconstructing a lost Eocene Paradise, Part II: On the utility of dynamic global vegetation models in pre-Quaternary climate studies. Global and Planetary Change, 50:1832.CrossRefGoogle Scholar
Shellito, C. J., Sloan, L. C., and Huber, M. 2003. Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene. Palaeogeography Palaeoclimatology Palaeoecology 193:113123.CrossRefGoogle Scholar
Sickel, W. A. V., Kominz, M. A., Miller, K. G., and Browning, J. V. 2004. Late Cretaceous and Cenozoic sea-level estimates: backstripping analysis of borehole data, onshore New Jersey. Basin Research, 16:451465.CrossRefGoogle Scholar
Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G. J., Pross, J., and Schouten, S. 2010. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 293:97103.CrossRefGoogle Scholar
Sloan, L. C. 1994. Equable climates during the early Eocene: Significance of regional paleogeography for North American climate. Geology, 22:881884.2.3.CO;2>CrossRefGoogle Scholar
Sloan, L. C., and Barron, E. J. 1992. A comparison of Eocene climate model results to quantified paleoclimatic interpretations: Palaeogeography, Palaeoclimatology, Palaeoecology, 93:183202.CrossRefGoogle Scholar
Sloan, L. C., and Huber, M. 2001. Eocene oceanic responses to orbital forcing on precessional time scale. Paleoceanography, 16:101111.CrossRefGoogle Scholar
Sloan, L. C., Huber, M., Crowley, T. J., Sewall, J. O., and Baum, S. 2001. Effect of sea surface temperature configuration on model simulations of “equable” climate in the Early Eocene. Palaeogeography Palaeoclimatology Palaeoecology, 167:321335.CrossRefGoogle Scholar
Sloan, L. C., Huber, M., and Ewing, A. 1999. Polar stratospheric cloud forcing in a greenhouse world, p. 273293 In: Abrantes, F. and Mix, A. (eds.). Reconstructing Ocean History: A Window into the Future. Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Sloan, L. C., and Pollard, D. 1998. Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world. Geophysical Research Letters, 25:35173520.CrossRefGoogle Scholar
Sloan, L. C., and Rea, D. K. 1996. Atmospheric CO2 of the early Eocene: A general circulation modeling sensitivity study, Palaeogeography, Palaeoclimatology, Palaeoecology, 119:275292.CrossRefGoogle Scholar
Sloan, L. C., Walker, J. C. G., and Moore, T. C. 1995. The role of oceanic heat transport in early Eocene climate. Paleoceanography, 10:347356.CrossRefGoogle ScholarPubMed
Sloan, L. C., Walker, J. C. G., Moore, T. C., Rea, D. K., and Zachos, J. C. 1992. Possible methane induced polar warming in the early Eocene. Nature, 357:320322.CrossRefGoogle ScholarPubMed
Sluijs, A., Brinkhuis, H., Schouten, S., Zachos, J. C., John, C. M., Bohaty, S., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens, G. R. 2007. Environmental precursors to rapid carbon injection at the Paleocene Eocene boundary. Nature, 450:12181221.CrossRefGoogle Scholar
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U., Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Sinninghe Damsté, J. S. and Brinkhuis, H. 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nature Geoscience, 2:777780.CrossRefGoogle Scholar
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Louren, L. J., Pedentchouk, N., Backman, J., Moran, K., and the Expedition 302 Scientists. 2006. Subtropical Arctic Ocean conditions during the Palaeocene Eocene thermal maximum. Nature, 441:610613.CrossRefGoogle ScholarPubMed
Spicer, R. A., Ahlberg, A., Herman, A. B., Hofmann, C. C., Raikevich, M., Valdes, P. J., and Markwick, P. J. 2008. The Late Cretaceous continental interior of Siberia: A challenge for climate models. Earth and Planetary Science Letters, 267:228235.CrossRefGoogle Scholar
Spicer, R. A., Ahlberg, A., Herman, A. B., Kelley, S. P., Raikevich, M. I., and Rees, P. M. 2002. Palaeoenvironment and ecology of the middle Cretaceous Grebenka flora of northeastern Asia, Palaeogeography Palaeoclimatology Palaeoecology, 184:65105.CrossRefGoogle Scholar
Spicer, R. A., and Parrish, J. T. 1986. Paleobotanical evidence for cool north polar climates in middle Cretaceous (Albian–Cenomanian) time. Geology, 14:703706.2.0.CO;2>CrossRefGoogle Scholar
Spicer, R. A., and Parrish, J. T. 1990. Late Cretaceous-early Tertiary palaeoclimates of northern high latitudes: a quantitative view, Journal of the Geological Society of London, 147:329341.CrossRefGoogle Scholar
Spielhagen, R. F., and Tripati, A. 2009. Evidence from Svalbard for near-freezing temperaturesand climate oscillations in the Arctic during the Paleocene and Eocene. Palaeogeography Palaeoclimatology Palaeoecology, 278:4856.CrossRefGoogle Scholar
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L. 2004. Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography, PA4027. doi:10.1029/2004PA001022.CrossRefGoogle Scholar
Stickley, C. E., Koç, N., Pearce, R. B., Kemp, A. E. S., Jordan, R. W., Sangiorgi, F., and St. John, K. 2012. Variability in the length of the sea ice season in the Middle Eocene Arctic. Geology, 40:727730 doi:10.1130/G32976.1.CrossRefGoogle Scholar
Stickley, C. E., St. John, K., Koç, N., Jordan, R. W., Passchier, S., Pearce, R. B., and Kearns, L. E. 2009. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature, 460:376379.CrossRefGoogle ScholarPubMed
Storey, M., Duncan, R. A., and Swisher, C. C. 2007. Paleocene–Eocene Thermal Maximum and the opening of the Northeast Atlantic. Science, 316:587589.CrossRefGoogle ScholarPubMed
Sud, Y. C., Walker, G. K., Zhou, Y. P., Schmidt, G. A., Lau, K.-M., and Cahalan, R. F. 2008. Effects of doubled CO2 on tropical sea surface temperatures (SSTs) for onset of deep convection and maximum SST: Simulations based inferences, Geophysical Research Letters, 35:L12707. doi:10.1029/2008GL033872.Google Scholar
Tarduno, J. A., Brinkman, D. B., Renne, P. R., Cottrell, R. D., Scher, H., and Castillo, P. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science, 282:22412244.CrossRefGoogle ScholarPubMed
Thomas, D. J. 2004. Evidence for production of North Pacific deep waters during the early Cenozoic Greenhouse. Nature, 430:6568.CrossRefGoogle Scholar
Thomas, E., Brinkhuis, H., Huber, M., and Roehl, U. 2006. An ocean view of the early Cenozoic Greenhouse World. Oceanography, 19:6372.CrossRefGoogle Scholar
Thompson, E. I., and Schmitz, B. 1997. Barium and the late Paleocene delta C-13 maximum: Evidence of increased marine surface productivity. Paleoceanography, 12:239254.CrossRefGoogle Scholar
Thrasher, B. L., and Sloan, L. C. 2009. Carbon dioxide and the early Eocene climate of western North America. Geology, 37:807810.CrossRefGoogle Scholar
Tindall, J., Flecker, R., Valdes, P. J., Schmidt, D. N., Markwick, P., and Harris, J. 2010. Modelling oxygen isotope distribution of ancient seawater using a coupled ocean-atmosphere GCM: implications for reconstructing early Eocene climate. Earth and Planetary Sciences Letters, 292:265273.CrossRefGoogle Scholar
Toggweiler, J. R., and Lea, D. W. 2010. Temperature differences between the hemispheres and ice age climate variability. Paleoceanography, 25:PA2212. doi:10.1029/2009PA001758.CrossRefGoogle Scholar
Toggweiler, J. R., and Bjornsson, H. 2000. Drake Passage and paleoclimate, Journal of Quaternary Sciences, 15:319–238.3.0.CO;2-C>CrossRefGoogle Scholar
Toggweiler, J. R., and Samuels, B. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research, 42:477500.CrossRefGoogle Scholar
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B. 2003. The changing character of precipitation. Bulletin of the American Meteorological Society, 84:12051217.CrossRefGoogle Scholar
Tripati, A., Delaney, M. L., Zachos, J., Anderson, L. D., Kelly, D. C., and Elderfield, H. 2003. Tropical sea surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera. Paleoceanography, 18. doi:10.1029/2003PA000937.CrossRefGoogle Scholar
Tripati, A. K., and Elderfield, H. 2004. Abrupt hydrographic changes in the equatorial Pacific and subtropical Atlantic from foraminiferal Mg/ Ca indicate greenhouse origin for the thermal maximum at the Paleocene–Eocene Boundary. Geochemistry Geophysics Geosystems 5:Q02006.CrossRefGoogle Scholar
Tripati, A., Zachos, J., Marincovich, L. Jr., and Bice, K. 2001. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios, Palaeogeography Palaeoclimatology Palaeoecology, 170:101113.CrossRefGoogle Scholar
Upchurch, G. R. Jr., Otto-Bliesner, B. L., and Scotese, C. R. 1999. Terrestrial vegetation and its effects on climate during the latest Cretaceous. In Barrera, E., and Johnson, C. C. (eds.). Evolution of the Cretaceous Ocean-Climate System: Boulder, Colorado, Geological Society of America Special Paper 332.Google Scholar
Vail, P. R., Mitchum, R. M. Jr., and Thompson, S. III. 1977. Global cycles of relative changes of sea level. In: Payton, C. E. (ed.). Seismic Stratigraphy and Global Changes of Sea Level. American Association of Petroleum Geologists Memoir 26, 8397.Google Scholar
Valdes, P. J. 2000a. Warm climate forcing mechanisms, p. 320 In Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.). Warm Climates in Earth History. Cambridge University Press.Google Scholar
Valdes, P. J. 2000b. Paleoclimate modeling. In Mote, P. and O'Neill, A. (eds.). Numerical Modeling of the Global Atmosphere in the Climate System, Kluwer Academic Publishers.Google Scholar
Vallis, G. K. 2000. Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion, Journal of Physical Oceanography, 30:933954.2.0.CO;2>CrossRefGoogle Scholar
van Hooidonk, R., and Huber, M. 2009. Equivocal evidence for a thermostat and unusually low levels of coral bleaching in the Western Pacific Warm Pool. Geophysical Research Letters, 36:L06705. doi:10.1029/2008GL036288.CrossRefGoogle Scholar
von der Heydt, A., and Dijkstra, H. A. 2006. Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography, 21:118.CrossRefGoogle Scholar
von der Heydt, A., and Dijkstra, H. A. 2008. The effect of ocean gateways on ocean circulation patterns in the Cenozoic. Global and Planetary Change, 62:132146.CrossRefGoogle Scholar
Wade, B. S., Houben, A. J. P., Quaijtaal, W., Schouten, S., Rosenthal, Y., Miller, K. G., Katz, M. E., Wright, J. D., and Brinkhuis, H. 2012. Multiproxy record of abrupt sea surface temperature cooling across the Eocene–Oligocene transition in the Gulf of Mexico. Geology, 40:159162.CrossRefGoogle Scholar
Wade, B. S., and Kroon, D. 2002. Middle Eocene regional climate instability: Evidence from the western North Pacific. Geology, 30:10111014.2.0.CO;2>CrossRefGoogle Scholar
Wade, B. S., Kroon, D., and Norris, R. D. 2001. Orbitally forced climate change in late mid- Eocene time at Blake Nose (Leg 171B): Evidence from stable isotopes in foraminifera. In Kroon, D., Norris, R. D., and Klaus, A. (eds.). Western North Atlantic Palaeogene and Cretaceous palaeoceanography: Geological Society of London Special Publication, 183:273291.Google Scholar
Wallace, J. M. 1992. Effect of deep convection on the regulation of tropical sea-surface temperature. Nature, 357:230231.CrossRefGoogle Scholar
Warnaar, J., Bijl, P. K., Huber, M., Sloan, L., Brinkhuis, H., Röhl, U., Sriver, R., and Visscher, H. 2009. Orbitally forced climate changes in the Tasman sector during the Middle Eocene. Palaeogeography Palaeoclimate Palaeoecology, 280:361370.CrossRefGoogle Scholar
Watanabe, T., Suzuki, A., Minobe, S., Kawashima, T., Kameo, K., Minoshima, K., Aguilar, Y. M., Wani, R., Kawahata, H., Nagai, T., and Kase, T. 2011. Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature, 471:209211.CrossRefGoogle Scholar
Watkins, N. D., and Kennett, J. P. 1972. Regional sedimentary disconformities and upper Cenozoic changes in bottom water velocities between Australia and Antarctica. Antarctic Research, 19:317334.Google Scholar
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M. 2001. The UVic Earth System Climate Model: Model description, climatology and application to past, present and future climates. Atmosphere-Ocean, 39:361428.CrossRefGoogle Scholar
Weaver, A. J., and Sarachik, E. S. 1991. The role of mixed boundary condition in numerical models of ocean's climate. Journal of Physical Oceanography, 21:14701493.2.0.CO;2>CrossRefGoogle Scholar
Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H., and Sinninghe Damsté, J. S. 2007. Warm Arctic continents during the Palaeocene–Eocene thermal maximum. Earth and Planetary Sciences Letters, 261:230238.CrossRefGoogle Scholar
Westerhold, T., Rohl, U., Laskar, J., Raffi, I., Bowles, J., Lourens, L. J., and Zachos, J. C. 2007. On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography 22: PA2201. doi:10.1029/2006PA001322.CrossRefGoogle Scholar
White, T. S., Gonzalez, L. A., Ludvigson, G. A., and Poulsen, C. 2001. Middle Cretaceous greenhouse hydrologic cycle of North America. Geology, 29:363366.2.0.CO;2>CrossRefGoogle Scholar
Wilf, P. 2000. Late Paleocene–early Eocene climate changes in southwestern Wyoming: Paleobotanical analysis: Geological Society of America Bulletin, 112:292307.2.0.CO;2>CrossRefGoogle Scholar
Wilf, P., Beard, K. C., Davies-Vollum, K. S., and Norejko, J. W. 1998. Portrait of a late Paleocene (early Clarkforkian) terrestrial ecosystem: Big Multi Quarry and associated strata, Washakie Basin, southwestern Wyoming, Palaios, 13:514532.CrossRefGoogle Scholar
Wilf, P., Johnson, K. R., and Huber, B. T. 2003. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences USA, 100:599604.CrossRefGoogle ScholarPubMed
Williams, I. N., Pierrehumbert, R. T., and Huber, M. 2009. Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36: L21805. doi:10.1029/2009GL039849.CrossRefGoogle Scholar
Wilson, P. A., and Norris, R. D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412:425429.CrossRefGoogle ScholarPubMed
Wilson, P. A., Norris, R. D., and Cooper, M. J. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30:607610.2.0.CO;2>CrossRefGoogle Scholar
Wilson, P. A., and Opdyke, B. N. 1996. Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of meta-stable carbonate. Geology, 24:555558.2.3.CO;2>CrossRefGoogle Scholar
Wing, S. L., Bao, H., and Koch, K. L. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic, p. 197237 In Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.). Warm Climates in Earth History. Cambridge University Press.Google Scholar
Wing, S. L., and Greenwood, D. R. 1993. Fossils and fossil climate: the case for equable continental interiors in the Eocene. Philosophical Transactions of the Royal Society of London B, 341:243252d.Google Scholar
Wing, S. L., and Harrington, G. J. 2001. Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology, 27:539563.2.0.CO;2>CrossRefGoogle Scholar
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H. 2005. Transient floral change and rapid global warming at the Paleocene–Eocene boundary. Science, 310:993996.CrossRefGoogle ScholarPubMed
Winguth, A. M. E., Heinze, C., Kutzbach, J. E., Maier-Reimer, E., Mikolajewicz, U., Rowley, D. B., Rees, P. M., and Ziegler, A. M. 2002. Simulated warm polar currents during the Middle Permian. Paleoceanography, 17:1057.CrossRefGoogle Scholar
Winguth, A., Shellito, C., Shields, C., and Winguth, C. 2010. Climate Response at the Paleocene-Eocene thermal maximum to greenhouse gas forcing—a model study with CCSM3. Journal of Climate, 23:25622584.CrossRefGoogle Scholar
Winguth, A. M. E., Thomas, E., and Winguth, C. 2012. Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene–Eocene Thermal Maximum: Implications for the benthic extinction. Geology, 40:263266.CrossRefGoogle Scholar
Wolfe, J. A. 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography Palaeoclimatology Palaeoecology 108:195205.CrossRefGoogle Scholar
Wolfe, J. A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 23:119142.CrossRefGoogle Scholar
Zachos, J.C., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451:279283.CrossRefGoogle ScholarPubMed
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686694.CrossRefGoogle ScholarPubMed
Zachos, J. C., Quinn, T. M., and Salamy, K. A. 1996. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 11:251266.CrossRefGoogle Scholar
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S., and Bralower, T. J. 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: Inferences from TEX86 and isotope data. Geology, 34:737740.CrossRefGoogle Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures: Paleoceanography, 9:353387.CrossRefGoogle Scholar
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., and Premoli-Silva, I. 2003. A transient rise in tropical sea surface temperature during the Paleocene–Eocene Thermal Maximum. Science, 302:15511554.CrossRefGoogle ScholarPubMed
Zeebe, R. E., Zachos, J., and Dickens, G. R. 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geoscience, 2:576580.CrossRefGoogle Scholar
Zhang, S., Greatbach, R. J., and Lin, C. A. 1993. A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling. Journal of Physical Oceanography, 23:287299.2.0.CO;2>CrossRefGoogle Scholar
Zhang, Y., Wallace, J. M., and Battisti, D. S. 1997. ENSO-like decade-to-century scale variability:1900–93. Journal of Climate, 10:10041020.2.0.CO;2>CrossRefGoogle Scholar
Zhang, Z., Nisancioglu, K. H., Flatøy, F., Bentsen, M., Bethke, I., and Wang, H. 2011. Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling. Climate of the Past, 7:801813.CrossRefGoogle Scholar
Zhou, J., Poulsen, C. J., Rosenbloom, N., Shields, C., and Briegleb, B. 2012. Vegetation-climate interactions in the warm mid-Cretaceous, Climate of the Past, 8:565576.CrossRefGoogle Scholar
Ziegler, A. M., Eshel, G., Rees, P. M., Rothfus, T. A., Rowley, D. B., and Sunderlin, D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia, 36:227254.CrossRefGoogle Scholar