Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T19:34:27.826Z Has data issue: false hasContentIssue false

Perspectives on the Evolution and Diversification of the Diatoms

Published online by Cambridge University Press:  21 July 2017

Matthew L. Julius*
Affiliation:
Department of Biological Sciences St. Cloud State University 225 Wick Math and Science Building, 720 Fourth Avenue South St. Cloud, MN, 56379
Get access

Abstract

The understanding of diatom evolution has progressed greatly over the last two decades. Existing data sets have been reanalyzed, new data sets have been generated, and new tools have been employed. Hindering progress is the seemingly endless number of diatom species remaining to be described and relative small number of investigators active in the field. This problem is further confounded by the dramatic reorganization of generic level classification in the group. Despite these problems, many conclusions can be made about prior hypotheses concerning the group's development. Most notably, the origin of the diatoms can be bracketed between the Late Triassic and Early Jurassic using fossil record and molecular clock estimates. This combination of techniques has also provided consensus and clarification to the origin and duration of specific lineages enhancing our understanding of the group's diversification, early ecology, and evolutionary relationships.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alverson, A. J., Jansen, R. K., and Theriot, E. C. 2007. Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, doi.10.1016/j.ympev.2007.03.024.Google Scholar
Andersen, R. A. 2004a. Heterokont phylogeny and origin(s) of plastids. The Japanese Journal of Phycology 52 (suppl.):153162.Google Scholar
Andersen, R. A. 2004b. Biology and systematics of heterokont and haptophyte algae. American Journal of Botany, 91:15081522.Google Scholar
Barron, J. A. and Baldauf, J. G. 1995. Cenozoic marine diatom biostratigraphy and applications to paleoclimatology and paleooceanography, p. 107118. In Babcock, L. E., and Ausich, W. I. (eds.), Siliceous Microfossils, Short Courses in Paleontology 8, Paleontological Society.Google Scholar
Bhattacharya, D., and Medlin, L. K. 2004. Dating and algal origin using molecular clock methods. Protist, 155:910.Google Scholar
Bourne, C. M., Palmer, J. D., and Stoermer, E. F. 1992. Organization of the chloroplast genome of the freshwater centric diatom Cyclotella meneghiniana . Journal of Phycology, 28:347355.Google Scholar
Bradbury, J. P. and Krebs, W. N. 1995. Actinocyclus species from lacustrine Miocene deposits of the western United States. pp. 149. In Bradbury, J. P. and Krebs, W. N. (eds.), The diatom genus Actinocyclus in the western United States. US Geological Survey Professional Paper 1543 A-B. United States Government Printing Office. 73 p.Google Scholar
Chacón-Baca, E., Beraldi-Campersi, H., Cevallos-Ferriz, S. R. S., Knoll, A. H., and Golubie, S. 2002. 70 Ma nonmarine diatoms from northern Mexico. Geology, 30: 279281.2.0.CO;2>CrossRefGoogle Scholar
Daugbjerg, N. and Andersen, R. A. 1997. A molecular phylogeny of the heterokont algae based on analyses of chloroplast-encoded rbcL sequence data. Journal of Phycology, 33:10311041.Google Scholar
Detoni, G. B. 1896. Sylloge algarum omnium hucusque cognitarum, Bacillarieae. Typis Seminarrii, Patavii. 1556 pp.Google Scholar
Edlund, M. B. 1998. Paleoecological evidence of climate change and historical patterns in planktonic diatom diversity inferred from the Lake Baikal (Russia) sediment record. Ph.D. Dissertation, University of Michigan, Ann Arbor, 154 pp.Google Scholar
Edlund, M. B. and Stoermer, E. F. 1993. Resting spores of the freshwater diatoms Achanthoceras and Uroselenia . Journal of Paleolimnology, 9:5561.CrossRefGoogle Scholar
Fisher, D. C. 1994. Stratocladistics: Morphological and temporal patterns and their relation to phylogenetic process. pp. 133172. In Grande, L. and Rieppel, O. (eds.), Interpreting the Hierarchy of Nature. Academic Press, San Diego, California.Google Scholar
Fourtnier, E. and Kociolek, J. P. 1999. Catalogue of the diatom genera. Diatom Research, 14: 1190.Google Scholar
Gaul, U., Geissler, U., Henderson, M., Mahoney, R., and Reimer, C. W. 1993. Bibliography of the fine-structure of diatom frustules (Bacillariophyceae). Proceedings of the Academy of Natural Sciences Philadelphia, 144:69238.Google Scholar
Gersonde, R. and Harwood, D. M. 1990. The paleontological significance of fossil diatoms from high latitude oceans, p. 5763, In Medlin, L.K. and Priddle, J. (eds.), Polar Marine Diatoms. British Antarctic Survey, Cambridge, England.Google Scholar
Goertzen, L. R. and Theriot, E. C. 2003. Effect of taxon sampling, character weighting, and combined data on the interpretation of relationships among the heterokont algae. Journal of Phycology, 39:423439.Google Scholar
Guillou, L., Chrétiennot-Dinet, M. J., Medlin, L. K., Claustre, J., Loiseaux-De Goéur, S., and Vaulot, D. 1999a. Bolidomonas: a new genus with two species belonging to a new algal class, Bolidophyceae (Heterokonta). Journal of Phycology, 35:368381.Google Scholar
Hárkansson, H. 1988. A study of species belonging to the Cyclotella bodanica/comta complex (Bacillariophyceae). pp. 329354 In Round, F. (ed.). Proceedings of the 9th International Symposium on Recent and Fossil Diatoms. Biopress, London.Google Scholar
Hargraves, P. E. and French, F. W. 1983. Diatom resting spores: significance and strategies. In Fryxell, G. (ed.), Survival Strategies of the Algae, p. 4968. Cambridge University Press, Cambridge, England.Google Scholar
Harwood, D. M. and Nikolaev, V. A. 1995. Cretaceous Diatoms: Morphology, Taxonomy, Biostratigraphy, p. 81106. In Babcock, L. E. and Ausich, W. I. (eds.), Siliceous Microfossils, Short Courses in Paleontology 8, Paleontological Society.Google Scholar
Harwood, D. M. 1988. Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy from Seymour Island, eastern Antarctic Peninsula, p. 55129. In Feldman, R. M. and Woodburne, M. O. (eds.), Seymour Island Geology and Paleontology. Geological Society of America Memoir, 169.Google Scholar
Harwood, D. M. and Gersonde, R. 1990. Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 2: Resting spores, chrysophycean cysts, and endoskeletal dinoflagellates, and notes on the origin of diatoms, p. 403426. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Hasle, G. R. 1977. Morphology and Taxonomy of Actinocyclus normanii f. subsalsa (Bacillariophyceae). Phycologia, 16:321328.Google Scholar
Hoover, R. B., Hoyle, F., Wickramasinge, N. C., Hoover, M. J., and Al-Mufti, S. 1986. Diatoms on earth, comets, europa, and interstellar space. Astrophsics and Space Science, 35:1945.Google Scholar
Hutchinson, D. R., Golmshtok, A. J., Zonenshain, L. P., Moore, T. C., Scholz, C. A., and Klitgord, K. D. 1992. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology, 20:589592.Google Scholar
Julius, M. L. 2000. Phylogeny of the cyclostephanoid diatoms: an investigation of their morphology and stratigraphy. PhD Dissertation, University of Michigan, Ann Arbor, 209 pp.Google Scholar
Julius, M. L., Stoermer, E. F., Colman, S. M., and Moore, T. C. 1997. A preliminary investigation of siliceous microfossil succession in late Quaternary sediments from Lake Baikal, Siberia. Journal of Paleolimnology, 28:187204.Google Scholar
Khursevich, G. K. 1990a. Classification of the genus Cyclostephanos (Bacillariophyceae). pp. 7381 In Simola, H. (ed.), Proceedings of the 10th International Symposium on Recent and Fossil Diatoms, O Koeltz, Koenigstein, Germany.Google Scholar
Khursevich, G. K. 1990b. Classification of the genus Stephanodiscus (Bacillariophyceae) on the basis of morphological features. pp. 6171. In Simola, H. (ed.), Proceedings of the 10th International Symposium on Recent and Fossil Diatoms, O Koeltz, Koenigstein, Germany.Google Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios, 1:504511.Google Scholar
Kociolek, J. P., and Spaulding, S. A. 2003. Introduction to Chapter 11 - Centric Diatoms pp. 559562. In Wehr, J. D. and Sheth, R. G., G, R. (eds.), Freshwater Algae of North America: Classification and Ecology. Academic Press, San Diego, California.Google Scholar
Kociolek, J. P. 1997. Historical constraints, species concepts and the search for a natural classification of diatoms. Diatom, 13:38.Google Scholar
Krebs, W. N. 1994. The biochronology of freshwater planktonic diatom communities in western North America. pp. 485499. In Kociolek, J. P. (ed.), Proceeding of the 11th International Symposium on Recent and Fossil Diatoms. California Academy of Sciences, San Francisco.Google Scholar
Krebs, W. N. 1999. Diatoms in oil and gas exploration. pp. 402412. In Stoermer, E. F. and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.Google Scholar
Krebs, W. N. and Bradbury, J.P. 1995. Actinocyclus species from lacustrine Miocene deposits of the western United States. pp. 63–61. In Bradbury, J. P. and Krebs, W. N. (eds.), The diatom genus Actinocyclus in the western United States. US Geological Survey Professional Paper 1543 A-B. United States Government Printing Office. 73 p.Google Scholar
Krebs, W. N., Bradbury, J. P., and Theriot, E. C. 1987. Neogene and Quaternary lacustrine diatom biochronology, western U.S.A. Palaios, 2:505513.Google Scholar
Lange-Bertalot, H. 1997. As a practical diatomist, how does one deal with the flood of new names? Diatom, 13: 912.Google Scholar
Loginova, L. P. 1990a. Evolution and phylogeny of the diatom genus Cyclotella . pp. 4753. In Simola, H. (ed.). Proceedings of the 10th International Symposium on Recent and Fossil Diatoms, O. Koeltz, Koenigstein.Google Scholar
Loginova, L. P. 1990b. Classification of the diatom genus Cyclotella . pp. 4753. In Simola, H. (ed.), Proceedings of the 10th International Symposium on Recent and Fossil Diatoms, O Koeltz, Koenigstein.Google Scholar
Lohman, K. E. and Andrews, W. 1968. Late Eocene non-marine diatoms from the Beaver Divide area. U.S. Geological Survey Professional Paper, 593E:126.Google Scholar
Mann, D. G. 1997. Shifting sands: the use of the lower taxonomic ranks in diatoms. Diatom, 13:1317.Google Scholar
Mann, D. G. and Marchant, H. J. 1989. The origin of the diatom and its life cycle, p. 307323. In Green, J. C. et al. (eds.), The Chromophyte Algae: Problems and Perspectives. Oxford University Press, New York.Google Scholar
Mann, D. G. and Droop, S. J. M. 1996. Biodiversity, biogeography and conservation of diatoms. pp. 1932. In Kristiansen, J. (ed.), Biogeography of Freshwater Algae: Proceedings of the Workshop on Biogeography of Freshwater Algae, held during the Fifth International Phycological Congress, Qindao, China, June 1994. Developments in Hydrobiology 118, Kluwer Academic Publishers, Dordecht.Google Scholar
Medlin, L. K., Kooistra, W. H. C. F., Gersonde, R., Sims, P. A., and Wellbrock, U. 1997. Is the origin of the diatoms related to the end-Permian mass extinction? Nova Hedwigia, 65:111.Google Scholar
Peck, J. A., King, J. W., Colman, S. M., and Kravchinsky, V. A. 1994. A rock B magnetic record from Lake Baikal, Siberia: Evidence of late Quaternary climate change. Earth and Planetary Science Letters, 122:221238.Google Scholar
Rothplez, A. 1896. Über die Flysch-Fucoiden und einige andere fossile Algae, sowie über laisische, Diatomeen führende Hornschwämme. Zeitschrift Deutsch Geologie Gesellschaft, 48:854914.Google Scholar
Rothplez, A. 1900. Über einen neuen jurassichen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift Deutsch Geologie Gesellschaft, 52:154160.Google Scholar
Round, F. E. 1996. What characters define diatom genera, species and infraspecific taxa? Diatom Research 11:203218.Google Scholar
Round, F. E. 1997. Genera, species and varieties B are problems real or imagined? Diatom, 13:2529.Google Scholar
Round, F. E. and Crawford, R. M. 1984. The lines of evolution of the Bacillariophyta, II. The centric series. Proceedings of the Royal Society of London, Serie B, 221:169188.Google Scholar
Round, F. E. and Sims, P. A. 1981. The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations, p. 301320. In Ross, R. (ed.) Proceedings of the Sixth Symposium of Recent and Fossil Diatoms, O. Koeltz Scientific Books, Koenigstein.Google Scholar
Round, F. E. and Crawford, R. M. 1981. The lines of evolution of the Bacillariophtya. I. Origin. Proceedings of the Royal Society of London, Series B, 211:237260.Google Scholar
Round, F. E., Crawford, D. M., and Mann, D. G. 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press. 747 pp.Google Scholar
Sicko-Goad, L., Stoermer, E. F., and Fahnenstiel, G. 1986. Rejuvenation of Melosiragranulata (Bacillariophyceae) resting cells from anoxic sediments of Douglas Lake, Michigan. I. light and 14C uptake. Journal of Phycology, 22:2228.Google Scholar
Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., Rampen, S. W., Massé, G., Allard, W. G., Belt, S. T., Robert, J., Rowland, S. J., Moldowan, J. M., Barbanti, S. M., Fago, F. J., Denisevich, P., Dahl, J., Trindade, L. A. F., and Schouten, S. 2004. The rise of the rhizosolenoid diatoms. Science, 304:584587.Google Scholar
Siver, P. A. and Wolfe, A. P. 2007. Eunotia spp. (Bacillariophyceae) from middle Eocene lake sediments and comments on the origin of the diatom raphe. Canadian Journal of Botany, 85:8390.Google Scholar
Sorhannus, U. 1997. The origination time of diatoms: an analysis based on ribosomal RNA data. Micropaleontology, 43:215218.Google Scholar
Stoermer, E. F., Wolin, J. A., Schelske, C. L., and Conley, D. J. 1985. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous microfossils preserved in the sediments. Journal of Phycology, 21:257276.CrossRefGoogle Scholar
Strelnikova, N. I. 1991. Evolution of marine diatoms: Cretaceous and Paleogene. Algologia, 1:6572.Google Scholar
Theriot, E. C. and Stoermer, E. F. 1984. Principal component analysis of Stephanodiscus: Observations on two new species from the Stephanodiscus niagarae complex. Bacillaria, 7:3758.Google Scholar
Theriot, E. C. and Bradbury, J. P. 1987. Mesodictyon, a new fossil genus of the centric diatom family Thalassiosiraceae from the Miocene Chalk Hills Formation, western Snake River Plain, Idaho. Micropaleontology, 33:356367.Google Scholar
Van De Peer, Y., Van Der Auwera, G., and De Wachter, R. 1996. The evolution of stramenopiles and alveolates as derived by “substitution rate calibration” of small ribosomal subunit RNA. Journal of Molecular Evolution, 42:201–10.Google Scholar
Vanlandingham, S. L. 1968–1979. Catalogue of the fossil and recent genera and species of diatoms and their synonyms. Verlag von J. Cramer, 493 p.Google Scholar