Skip to main content Accessibility help
×
Home

Of Time and Taphonomy: Preservation in the Ediacaran

  • Charlotte G. Kenchington (a1) (a2) and Philip R. Wilby (a2)

Abstract

The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved. Several groundbreaking advances in this field have been made since the 1990s, and have paved the way for increasingly thorough analyses and elegant interpretations.

Copyright

References

Hide All
Anderson, E. P., Schiffbauer, J. D., and Xiao, S. 2011. Taphonomic study of Ediacaran organic-walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology, 39:643646. doi: 10.1130/G31969.1.
Antcliffe, J. B., and Brasier, M. D. 2007. Charnia and sea pens are poles apart. Journal of the Geological Society, 164:4951. doi:10.1144/0016-76492006-080.
Billings, E. 1872. Fossils in Huronian rocks. Canadian Naturalist and Quarterly Journal of Science, 6:478.
Boynton, H. E., and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.
Boynton, H. E., and Ford, T. D. 1979. Pseudovendia charnwoodensis—a new Precambrian arthropod from Charnwood Forest, Leicestershire. Mercian Geologist, 7:175177.
Brasier, M. D., Antcliffe, J. B., and Liu, A. G. 2012. The architecture of Ediacaran Fronds. Palaeontology, 55:11051124. doi: 10.1111/j.1475-4983.2012.01164.x.
Brasier, M. D., Liu, A. G., Menon, L., Matthews, J. J., McIlroy, D., and Wacey, D. 2013. Explaining the exceptional preservation of Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland: A hydraulic model. Precambrian Research, 231:122135. doi: 10.1016/j.precamres.2013.03.013.
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301. doi: 10.1146/annurev.earth.31.100901.144746.
Bruton, D. L. 1991. Beach and laboratory experiments with the jellyfish Aurelia and remarks on some fossil “‘medusoid”’ traces, p. 125129. In Simonetta, A. M., and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa, Cambridge University Press, Cambridge.
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543. doi: 10.1111/j.1475-4983.2007.00656.X.
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328:109117. doi: 10.1016/j.palaeo.2012.02.009.
Callow, R. H. T., and Brasier, M. D. 2009a. A solution to Darwin's dilemma of 1859: exceptional preservation in Salter's material from the late Ediacaran Longmyndian Supergroup, England. Journal of the Geological Society, 166:14. doi:10.1144/0016-76492008-095.
Callow, R. H. T., and Brasier, M. D. 2009b. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth-Science Reviews, 96:207219. doi: 10.1016/j.earscirev.2009.07.002.
Canfield, D. E., Poulton, S. W., Knoll, A. H., Narbonne, G. M., Ross, G., Goldberg, T., and Strauss, H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321:949952. doi: 10.2307/20144603.
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690701.
Clapham, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.
Darroch, S. A. F., Laflamme, M., and Clapham, M. E. 2013. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology, 39:591608. doi: 10.1666/12051.
Darroch, S. A. F., Laflamme, M., Schiffbauer, J. D., and Briggs, D. E. G. 2012. Experimental formation of a microbial death mask. PALAIOS, 27:293303. doi: 10.2110/palo.2011.p11-059r.
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2006. Assemblage palaeoecology of the Ediacara biota: The unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology, 232:131147. doi: 10.1016/j.palaeo.2005.12.015.
DziK, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology, 43:114126. doi: 10.2307/3884846.
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “sea-pen” Rangea . Journal of Morphology, 252:315334. doi: 10.1002/jmor.1108.
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:10911097. doi: 10.1126/science.1206375.
Farrell, U. C. 2014. Pyritization of soft tissues in the fossil record: an overview, p. 3557. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. John Hopkins University Press, Baltimore, MD.
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc like bilaterian organism. Nature, 388:868871.
Flude, L. I., and Narbonne, G. M. 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences, 45:10951109. doi: 10.1139/E08-057.
Ford, T. D. 1958. Pre-Cambrian Fossils from Charnwood Forest. Proceedings of the Yorkshire Geological and Polytechnic Society, 31:211217. doi:10.1144/pygs.31.3.211.
Gaines, R. R., Kennedy, M. J., and Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:193205. doi: 10.1016/j.palaeo.2004.07.034.
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS, 14:4057. doi: 10.2307/3515360.
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoir, 20:181224.
Gehling, J. G., and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41:447450. doi:10.1130/G33881.1.
Gehling, J. G., Droser, M. L., Jensen, S. R., and Runnegar, B. N. 2005. Ediacaran organisms: relating form and function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development: Proceedings of a Symposium Honoring Adolf Seilacher for his Contributions to Paleontology, in Celebration of His 80th Birthday. Peabody Museum of Natural History, Yale University, New Haven.
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456. doi:10.1111/j.0031-0239.2000.00134.x.
Glaessner, M. F. 1979. Precambrian, p. A79118. In Robinson, R. A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part A. Geological Society of America and University Kansas Press, Boulder, CO and Lawrence, KS.
Glaessner, M. F., and Wade, M. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.
Glass, J. B., Axler, R. P., Chandra, S., and Goldman, C. R. 2012. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology, 3:331. doi: 10.3389/fmicb.2012.00331.
Grant, S. W. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290–A:261294.
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30:203221.
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., and Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in Arctic Siberia. Geology, 36:803806. doi: 10.1130/G24946A.1.
Grazhdankin, D., and Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia, 40:201210. doi:10.1111/j.1502-3931.2007.00025.x.
Grotzinger, J. P., Waiters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolitestromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359. doi: 10.2307/2666114.
Hua, H., Pratt, B. R., and Zhang, L. 2003. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. PALAIOS, 18:454459.
Hofmann, H. J., Hill, J., and King, A. F. 1979. Late Precambrian microfossils, southeastern Newfoundland. Geological Survey of Canada Current Research Part B, 79-1B:8398.
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2004. A new Period for the geologic time scale. Science, 305:621622. doi: 10.1126/science.1098803.
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H. 2013. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Research, 23:558573.doi:10.1016/j.gr.2012.11.004.
Laflamme, M., and Narbonne, G. M. 2008. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:162179. doi: 10.1016/j.palaeo.2007.05.020.
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. Geological Society of London Special Publications, 286:237257. doi:10.1144/SP286.17.
Laflamme, M., Schiffbauer, J. D., and Narbonne, G. M. 2012. Deep-water microbially induced sedimentary structures (MISS) in deep time, in the Ediacaran fossil Ivesheadia , p. 111123. In Noffke, N. and Chaftez, H. (eds.), Microbial Mats in Siliciclastic Depositional Systems Through Time. SEPM Special Publication 101, SEPM, Tulsa, OK.
Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., and Briggs, D. E. G. 2011. Microbial biofilms and the preservation of the Ediacara biota. Lethaia, 44:203213. doi:10.1111/j.1502-3931.2010.00235.x.
Laflamme, M., Xiao, S., and Kowalewski, M. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences of the United States of America, 106:1443814443.doi:10.1073/pnas.0904836106.
Lan, Z.-W., and Chen, Z.-Q. 2012. Exceptionally preserved microbially induced sedimentary structures from the Ediacaran post-glacial successions in the Kimberley region, northwestern Australia. Precambrian Research, 200–203:125. doi: 10.1016/j.precamres.2012.01.006.
Liu, A. G., McIlroy, D., Antcliffe, J. B., and Brasier, M. D. 2011. Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology, 54:607630. doi:10.1111/j.l475-4983.2010.01024.x.
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126. doi:10.1130/G30368.1.
Liu, A. G., McIlroy, D., Matthews, J. J., and Brasier, M. D. 2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society, 169:395403. doi: 10.1144/0016-76492011-094.
Liu, A. G., McIlroy, D., Matthews, J. J., and Brasier, M. D. 2013. Exploring an Ediacaran “nursery”: growth, ecology and evolution in a rangeomorph palaeocommunity. Geology Today, 29:2326. doi:10.1111/j.1365-2451.2013.00860.x.
Locatelli, E. R. 2014. The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record, p. 237257. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
MacGabhann, B. A. 2007. Discoidal fossils of the Ediacaran biota: a review of current understanding. Geological Society of London, Special Publications, 286:297313. doi: 10.1144/SP286.21.
MacGabhann, B. A. 2014. There is no such thing as the “Ediacara Biota.” Geoscience Frontiers, 5:5362. doi: 10.1016/j.gsf.2013.08.001.
MacGabhann, B. A., and Murray, J. 2010. Nonmineralised discoidal fossils from the Ordovician Bardahessiagh Formation, Co. Tyrone, Ireland. Irish Journal of Earth Sciences, 28:112. doi: 10.3318/IJES.2010.28.1.
MacGabhann, B. A., Murray, J., and Nicholas, C. 2007. Ediacaria booleyi: weeded from the Garden of Ediacara? Geological Society of London Special Publications, 286:277295. doi: 10.1144/SP286.20.
Mapstone, N. B., and McIlroy, D. 2006. Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Research, 149:126148. doi: 10.1016/j.precamres.2006.05.007.
McIlroy, D., Brasier, M. D., and Lang, A. S. 2009. Smothering of microbial mats by macrobiota: implications for the Ediacara biota. Journal of the Geological Society, 166:11171121. doi: 10.1144/0016-76492009-073.
Meyer, M., Elliott, D., Schiffbauer, J. D., Hall, M., Hoffman, K. H., Schneider, G., Vickers-Rich, P., and Xiao, S. 2014a. Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three-dimensionally in mass flow deposits, Nama Group, Namibia. Journal of Paleontology, 88:240252.
Meyer, M., Elliott, D., Wood, A. D., Polys, N. F., Colbert, M., Maisano, J. A., Vickers-Rich, P., Hall, M., Hoffman, K. H., Schneider, G., and Xiao, S. 2014b. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Research, 249:7987. doi: 10.1016/j.precamres.2014.04.013.
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y., and Hua, H. 2012. Taphonomy of the late Ediacaran enigmatic ribbon-like fossil Shaanxilithes . PALAIOS, 27:354372.
Meyer, M., Xiao, S., Gill, B. C., Schiffbauer, J. D., Chen, Z., Zhou, C., and Yuan, C. 2014c. Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 396:6274.
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411144.
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442. doi: 10.1146/annurev.earth.33.092203.122519.
Narbonne, G. M., Dalrymple, R. W., and Gehling, J. G. 2001. Neoproterozoic fossils and environments of the Avalon Peninsula, Newfoundland. Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting Guidebook: St. Johns 2001, Trip B5.
Narbonne, G. M., Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology, 83:503523. doi: 10.2307/29739123.
Narbonne, G. M., Xiao, S., Shields, G. A., and Gehling, J. G. 2012. Chapter 18—The Ediacaran Period, p. 413435. In Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (eds.), The Geologic Time Scale. Elsevier, Boston.
Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W. E. 2001. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71:649656.
Noffke, N., Knoll, A. H., and Grotzinger, J. P. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the Upper Neoproterozoic Nama Group, Namibia. PALAIOS, 17:533544. doi: 10.2307/3515692.
Norris, R. D. 1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia, 22:381393. doi:10.1111/j.1502-3931.1989.tb01439.x.
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175. doi: 10.2307/2895499.
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855858. doi: 10.1130/G24991A.1.
Penny, A. M., Wood, R., Curtis, A., Bowyer, F., Tostevin, R., and Hoffman, K.-H. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science, 344:15041506. doi: 10.1126/science.1253393.
Peterson, K. J., Waggoner, B., and Hagadorn, J. W. 2003. A fungal analog for Newfoundland Ediacaran fossils? Integrative and Comparative Biology, 43:127136.
Raff, R. A., and Raff, E. C. 2014. The role of biology in the fossilization of embryos and other soft-bodied organisms: Microbial biofilms and Lagerstätten. p. 83100. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology, 20:523544. doi: 10.2307/2401233.
Runnegar, B. N., and Fedonkin, M. A. 1992. Proterozoic metazoan body fossils, p. 369387. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge University Press, Cambridge.
Sansom, R. S. 2014. Experimental decay of soft tissues, p. 217236. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
Schiffbauer, J. D., Wallace, A. F., Broce, J., and Xiao, S. 2014. Exceptional fossil conservation through phosphatization, p. 5982. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452:456459. doi: 10.1038/nature06811.
Seilacher, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions?, p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution. Report of the Dahlem Workshop, Berlin May 1–6, 1983. Springer-Verlag, Berlin.
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, 149:607613. doi: 10.1144/gsjgs.149.4.0607.
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. PALAIOS, 14:8693. doi: 10.2307/3515363.
Seilacher, A., Grazhdankin, D., and Legouta, A. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research, 7:4354. doi: 10.2517/prpsj.7.43.
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., and Knoll, A. H. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences of the United States of America, 110:1344613451. doi: 10.1073/pnas.1312778110.
Sperling, E. A., Peterson, K. J., and Laflamme, M. 2011. Rangeomorphs, Thectardis (Porifera?), and dissolved organic carbon in the Ediacaran oceans. Geobiology, 9:2433. doi: 10.1111/j.1472-4669.2010.00259.x.
Sperling, E. A., and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution & Development, 12:201209. doi: 10.1111/j.1525-142X.2010.00404.x.
Sprigg, R. C. 1947. Early Cambrian(?) jellyfishes from the Flinders Ranges, South Australia. Transactions of The Royal Society of South Australia, 71:212224.
Sprigg, R. C. 1949. Early Cambrian “jellyfishes” of Ediacara, South Australia and Mount John, Kimberley District, Western Australia. Transactions of The Royal Society of South Australia, 73:7299.
Steiner, M., and Reitner, J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29:11191122. doi: 10.1130/0091-7613(2001)029 <1119:EOOSIE>2.0.CO;2.
Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China. Paracharnia gen. nov. Precambrian Research, 31:361375. doi: 10.1016/0301-9268(86)90040-9.
Tarhan, L. G., Droser, M. L., and Gehling, J. G. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. PALAIOS, 25:823830. doi: 10.2110/palo.2010.p10-074r.
Vickers-rich, P., Ivantsov, A. Y., Trusler, P. W., Narbonne, G. M., Hall, M., Wilson, S. A., Greentree, C., Fedonkin, M. A., Elliott, D. A., Hoffmann, K. H., and Schneider, G. I. C. 2013. Reconstructing Rangea: New discoveries from the Ediacaran of Southern Namibia. Journal of Paleontology, 87:115. doi: 10.1666/12-074R.1.
Wade, M. 1969. Medusae from uppermost Precambrian or Cambrian sandstones, central Australia. Palaeontology, 12:351365.
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104113.
Wilby, P. R., Carney, J. N., and Howe, M. P. A. 2011. A rich Ediacaran assemblage from eastern Avalonia: Evidence of early widespread diversity in the deep ocean. Geology, 39:655658. doi: 10.1130/G31890.1.
Xiao, S., Droser, M., Gehling, J. G., Hughes, I. V., Wan, B., Chen, Z., and Yuan, X. 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology, 41:10951098. doi: 10.1130/G34691.1.
Xiao, S., and Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution, 24:3140. doi: 10.1016/j.tree.2008.07.015.
Xiao, S., Shen, B., Zhou, C., Xie, G., and Yuan, X. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America, 102:1022710232. doi: 10.1073/pnas.0502176102.
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76:347376. doi: 10.2307/1307146.
Yuan, X., Chen, Z., Xiao, S., Zhou, C., and Hua, H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470:390393. doi: 10.1038/nature09810.
Zhang, X., Hua, H., and Reitner, J. 2006. A new type of Precambrian megascopic fossils: the Jinxian biota from northeastern China. Facies, 52:169181. doi: 10.1007/s10347-005-0027-z.
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y., and Droser, M. L. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36:867870. doi: 10.1130/G25203A.1.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed