Skip to main content Accessibility help

Diversification of a New Atlantic Clade of Scleractinian Reef Corals: Insights from Phylogenetic Analysis of Morphologic and Molecular Data

  • Ann F. Budd (a1) and Nathan D. Smith (a1)


Recent molecular analyses of the traditional scleractinian suborder Faviina have revealed a new Atlantic clade of reef corals, which disagrees with traditional classification. The new clade contradicts long-held notions of Cenozoic diversification being concentrated in the Pacific, and of Atlantic species bearing close evolutionary relationships with Pacific species. In the present paper, we outline an approach for integrating molecular, morphologic, and fossil data, which will allow future examination of the timing and phylogenetic context of the divergence of the new Atlantic clade. Our analyses are preliminary and focus on 17 genetically characterized species within the new Atlantic clade. The molecular dataset consists of 630 base pairs from the COI gene and 1143 base pairs from the cytB gene. The morphologic dataset consists of 25 traditional morphologic characters (86 states) in 57 species (23 extant and 32 extinct). Phylogenetic analyses are first performed separately on the molecular and morphologic (extant taxa only) datasets. Subsequent phylogenetic analyses involve adding fossil taxa to the morphologic dataset and performing a combined analysis for extant taxa.

The results of both molecular and morphologic phylogenetic analyses disagree with traditional classification. They also disagree with each other, indicating the two datasets provide different phylogenetic signals and are informative at different taxonomic levels. Molecular trees for the mitochondrial genes analyzed have higher bootstrap support for deeper nodes in the tree; morphologic trees have higher bootstrap support near branch tips. The addition of fossils to the morphologic dataset does not improve resolution within phylogenetic trees, but it does indicate that all of the major subclades within the new Atlantic clade originated prior to middle Eocene time. The pulse of origination associated with Plio-Pleistocene faunal turnover involved speciation within well-established clades. Examination of the geographic distributions of the taxa within each of the four resulting trees indicates that the origin of the Brazilian reef coral fauna involved more than one separate dispersal event or that the fauna may be descended from a larger Mio-Pliocene Atlantic (Caribbean to Brazil) species pool, portions of which have subsequently become extinct. Because of the complex nature of scleractinian evolution (involving possible hybridization), we advocate using a phylogenetic approach that compares multiple independent datasets, including datasets that are currently being developed for new microstructural characters.



Hide All
Budd, A. F. 2000. Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs, 19:2535.
Budd, A. F. 2004. Reassessment of morphologic characters used in phylogeny reconstruction and classification within the suborder Faviina (Anthozoa: Scleractinia), p. 140. 10th International Coral Reef Symposium Abstracts, Okinawa, Japan.
Budd, A. F., and Johnson, K. G. 1999a. Neogene paleontology in the northern Dominican Republic. The family Faviidae (Anthozoa: Scleractinia). Part II. The genera Caulastraea, Favia, Diploria, Manicina, Hadrophyllia, Thysanus, and Colpophyllia . Bulletins of American Paleontology, 109(356):583, pl. 1–21.
Budd, A. F., and Johnson, K. G. 1999b. Origination preceding extinction during Late Cenozoic turnover of Caribbean reefs. Paleobiology, 25:188200.
Budd, A. F., and Pandolfi, J. M. 2004. Overlapping species boundaries and hybridization within the Montastraea “annularis” reef coral complex in the Pleistocene of the Bahama Islands. Paleobiology, 30:396425.
Budd, A. F., Stemann, T. A., and Johnson, K. G. 1994. Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. Journal of Paleontology, 68:951977.
Budd, A. F., Stemann, T. A., and Stewart, R. H. 1992. Eocene Caribbean reef corals: A unique fauna from the Gatuncillo Formation of Panama. Journal of Paleontology, 66:570594.
Budd, A. F., and Klaus, J. S. 2001. The origin and early evolution of the Montastraea “annularis” species complex (Anthozoa: Scleractinia). Journal of Paleontology, 75:527545.
Brochu, C.A. 1997. Fossils, morphology, divergence timing, and the phylogenetic relationships of Gavialis . Systematic Biology, 46:479522.
Brochu, C.A. 2003. Phylogenetic approaches toward crocodylian history. Annual Review of Earth and Planetary Sciences, 31:357397.
Cairns, S. D. 1997. A generic revision and phylogenetic analysis of the Turbinoliidae (Cnidaria: Scleractinia). Smithsonian Contributions to Zoology, 591, 55 p.
Cairns, S. D. 2001. A generic revision and phylogenetic analysis of the Dendrophyllidae (Cnidaria: Scleractinia). Smithsonian Contributions to Zoology, 615, 75 p.
Chen, C. A., Wallace, C. C., and Wolstonholme, J. 2002. Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Molecular Phylogenetics and Evolution, 23:137149.
Collin, R. 2003a. Phylogenetic relationships among calyptraeid gastropods and their implications for the biogeography of marine speciation. Systematic Biology, 52:618640.
Collin, R. 2003b. The utility of morphologic characters in gastropod systematics: An example from the Calyptraeidae. Biological Journal of the Linnean Society, 78:541593.
Cuif, J.-P., and Dauphin, Y. 1998. Microstructural and physico-chemical characterization of “centers of calcification” in septa of some recent scleractinian corals. Palaontologische Zeitschrift, 72:257270.
Cuif, J.-P., Lecointre, G., Perrin, C., Tillier, A., and Tillier, S. 2003. Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: A dual approach for a new taxonomic framework. Zoologica Scripta, 32:459473.
Daly, M., Fautin, D. G., and Cappola, V. A. 2003. Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zoological Journal of the Linnean Society, 139:419437.
Farris, J. S., Källersjö, M., Kluge, A. G., and Bult, C. 1994. Testing significance of incongruence. Cladistics, 10:315319.
Frost, S. H., and Langenheim, R. L. 1974. Cenozoic reef biofacies. Northern Illinois University Press, DeKalb, Illinois, 388 p.
Fukami, H., Budd, A. F., Paulay, G., Solé-Cava, A., Chen, C. A., Iwao, K., and Knowlton, N. 2004. Conventional Taxonomy Obscures Deep Divergence between Pacific and Atlantic Corals. Nature, 427:832835.
Giribet, G. 2002. Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion. Molecular Phylogenetics and Evolution, 24:345357.
Giribet, G., and Wheeler, W.C. 2002. On bivalve phylogeny: A high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology, 121:271324.
Hillis, D. M., and Wiens, J. J. 2000. Molecules versus morphology in systematics: Conflicts, artifacts, and misconceptions, p. 119. In Wiens, J. J. (ed.), Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, D.C.
Hipp, A. L., Hall, J. C., and Sytsma, K. J. 2004. Congruence versus phylogenetic accuracy: Revisiting the incongruence length difference test. Systematic Biology, 53:8189.
Hoeksema, B. W. 1989. Taxonomy, phylogeny, and biogeography of mushroom corals (Scleractinia: Fungiidae). Zoologische Verhandelingen, 254:295 p.
Jackson, J. B. C., and Johnson, K. G. 2000. Life in the last few million years, p. 221235. In Erwin, D. H. and Wing, S. L. (eds.), Deep time: Paleobiology's perspective. Paleobiology, supplement to Volume 26, Number 4.
Johnson, K. G. 1998. A phylogenetic test of accelerated turnover in Neogene Caribbean brain corals (Scleractinia: Faviidae). Palaeontology, 41:12471268.
Laborel, J. 1969. Madréporaires et Hydrocoralliaires récifaux des côtes brésiliiennes. Annales del Institute Océanographique, 47:171229, 8 pl.
Lieberman, B. S. 2000. Paleobiogeography: Using fossils to study global change, plate tectonics, and evolution. Kluwer Academic Press/Plenum Publishing, New York, NY, 208 p.
Mickevich, M., and Farris, J. 1981. The implications of congruence in Menidia . Systematic Zoology, 30:351370.
Norell, M. A. 1992. Taxic origin and temporal diversity: The effect of phylogeny, p. 89118. In Novacek, M. J. and Wheeler, Q. D., (eds.), Extinction and Phylogeny. Columbia University Press, New York.
Pandolfi, J. M. 1992. Successive isolation rather than evolutionary centres for the origination of Indo-Pacific reef corals. Journal of Biogeography, 19:593609.
Paulay, G. 1997. Diversity and distribution of reef organisms, p. 298353. In Birkeland, C., (ed.), Life and Death of Coral Reefs. Chapman & Hall, New York.
Romano, S. L., and Cairns, S. D. 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science, 67:10431068.
Romano, S. L., and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.
Romano, S. L., and Palumbi, S. R. 1997. Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in Scleractinian corals. Journal of Molecular Evolution, 45:397411.
Simmons, M. P., Reeves, A., and Davis, J. I. 2004. Character-state space versus rate of evolution in phylogenetic inference. Cladistics, 20:191204.
Smith, A. B. 1998. What does paleontology contribute to systematics in a molecular world? Molecular Phylogenetics and Evolution, 9:437447.
Smith, N. D., and Turner, A. H. 2005. Morphology's role in phylogeny reconstruction: Perspectives from paleontology. Systematic Biology, 54(1): 166173.
Sorenson, M. D. 1999. TreeRot, version 2. Boston University, Boston, Massachusetts.
Stolarski, J. 2003. Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy. Acta Paleontologica Polonica, 48:497530.
Stolarski, J., and Roniewicz, E. 2001. Towards a new synthesis of evolutionary relationships and classification of Scleractinia. Journal of Paleontology, 75:10901108.
Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Vaughan, T. W. 1919. Fossil corals from Central America, Cuba, and Porto Rico with an account of the American Tertiary, Pleistocene, and recent coral reefs. U.S. National Museum Bulletin, 103:189524, pl. 68–152.
Vaughan, T. W., and Hoffmeister, J. E. 1926. Miocene corals from Trinidad. Papers of the Department of Marine Biology, Carnegie Institution of Washington, 23:107132, pl. 1–7.
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Paper, 104, 363 p., 51 pl.
Veron, J. E. N. 1995. Corals in Space and Time. UNSW Press, Sydney, Australia, 321 p.
Veron, J. E. N. 2000. Corals of the World. Australian Institute of Marine Science, Townsville, Australia.
Wallace, C. C. 1999. Staghorn corals of the world: A revision of the genus Acropora . CSIRO Publishing, Collingwood, Victoria, Australia, 421 p.
Weisbord, N. E. 1974. Late Cenozoic corals of south Florida. Bulletins of American Paleontology, 66:259544, pl. 21–57.
Wells, J. W. 1956. Scleractinia, p. F328–F444. In Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, vol. F. Geological Society of America and University of Kansas Press, New York, New York, and Lawrence, Kansas.
Wells, J. W. 1973. New and old Scleractinian corals from Jamaica. Bulletin of Marine Science, 23:1658.

Related content

Powered by UNSILO

Diversification of a New Atlantic Clade of Scleractinian Reef Corals: Insights from Phylogenetic Analysis of Morphologic and Molecular Data

  • Ann F. Budd (a1) and Nathan D. Smith (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.