Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T07:35:38.784Z Has data issue: false hasContentIssue false

Write and erase mechanism of surface controlled bistable nematic pixel

Published online by Cambridge University Press:  15 March 1999

M. Giocondo*
Affiliation:
Istituto Nazionale di Fisica della Materia, Unità di Cosenza, c/o Dipartimento di Fisica Università della Calabria, 87036 Cosenza, Italy
I. Lelidis
Affiliation:
École Polytechnique Fédérale de Lausanne, Departement de Physique, Institut de Génie Atomique, 1015 Lausanne, Switzerland
I. Dozov
Affiliation:
Laboratoire de Physique des Solides, Université de Paris-Sud, Centre d'Orsay, bâtiment 510, 91405 Orsay Cedex, France
G. Durand
Affiliation:
Laboratoire de Physique des Solides, Université de Paris-Sud, Centre d'Orsay, bâtiment 510, 91405 Orsay Cedex, France
Get access

Abstract

Recently a new nematic bistable pixel, using simple monostable planar anchorings, has been proposed [4−6]. This pixel can be switched between two textures, having the same boundary conditions but different optical properties: one texture (U) is undistorted, whereas the other one (T) is characterized by the presence of a half-turn twist. The UT switching was obtained by abruptly dropping the driving electric field. A slow decrease of the driving electric field favors the TU transition. The electric field fall rate discriminates the kind of coupling between the boundary surfaces, hydrodynamic or elastic. Here we show the same behavior of this system by using square electric field pulses. We present experimental results concerning the critical values (amplitude and duration) of the driving signals, for which the elastic and the hydrodynamic effects are balanced and we measure their optimized values. Our results are in reasonable agreement with the theoretical predictions obtained by a simplified model.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barberi, R., Durand, G., Appl. Phys. Lett. 58, 2907 (1991). CrossRef
Barberi, R., Giocondo, M., Durand, G., Appl. Phys. Lett. 60, 1085 (1992). CrossRef
Barberi, R., Giocondo, M., Martinot-Lagarde, Ph., Durand, G., J. Appl. Phys. 62, 3270 (1993).
Dozov, I., Nobili, M., Durand, G., Appl. Phys. Lett. 70, 1179 (1997). CrossRef
Ph. Martinot-Lagarde, I. Dozov, E. Polossat, M. Giocondo, I. Lelidis, G. Durand, Proceedings of Society for Information Display 97, 1997, p. 41.
I. Dozov, Ph. Martinot-Lagarde, E. Polossat, I. Lelidis, M. Giocondo, G. Durand, Proceedings of Electronic Imaging 97, Liquid Crystal Materials, Devices, Applications V, February 9-14, 1997, San Jose, USA.
Gharbi, A., Fekih, F.R., Durand, G., Liq. Cryst. 3, 515 (1992). CrossRef
P.-G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, 1974).
Yokoyama, H., van Sprang, H., J. Appl. Phys. 57, 4520 (1985); see also M. Nobili, Ph.D. thesis, Pisa, Italy, 1992. CrossRef
Rapini, A., Papoular, M., J. Phys. Colloq. France 30, C4-54 (1969).
Pikin, S., Ryschenkow, G., Urbach, W., J. Phys. France 37, 241 (1976). CrossRef
Derzhanski, A.I., Petrov, A.G., Acta Phys. Polon. A 55, 747 (1979).
Blinov, L., Durand, G., Yablonsky, S., J. Phys. II France 2, 1287 (1992). CrossRef
G. Durand, E. Virga, Phys. Rev. E. (submitted, 1998). APS Link not valid for this citation
Dozov, I, Durand, G., Liq. Crystals Todays 2, 1 (1998).