Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T00:10:52.842Z Has data issue: false hasContentIssue false

Theoretical studies of the local structures and the g factors for the tetragonal Ti3+-Vo centers in BaTiO3 bulks and thin films

Published online by Cambridge University Press:  28 September 2011

Z.-H. Zhang*
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
S.-Y. Wu
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China
M.-Q. Kuang
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
B.-T. Song
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Get access

Abstract

The local structures and the EPR g factors g and g are theoretically studied for the tetragonal Ti3+-Vo centers in BaTiO3 bulks and thin films using the perturbation formulas of the g factors for a 3d1 ion in tetragonally elongated octahedra and compressed tetrahedra, respectively, based on the cluster approach. For the Ti3+-Vo center in BaTiO3 bulks, the impurity Ti3+ suffers the displacement away from the oxygen vacancy Vo by about 0.15 Å along the C4 axis due to the electrostatic repulsion of the Vo. Nevertheless, the Ti3+-Vo center in BaTiO3 thin films may exhibit the tetragonally compressed tetrahedron, characterized by the bond angle 55.88° larger than that (≈54.74°) of an ideal tetrahedron. The quite different g factors (especially g anisotropies Δg = gg) for the two kinds of samples are discussed, in view of the dissimilar bonding or coordination environments (i.e., incomplete bonding in the thin films may lead to the lower coordination number).

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ramajo, L., Parra, R., Reboredo, M., Zaghete, M., Cas, M., Mater. Chem. Phys. 107, 110 (2008)CrossRef
Schrader, M., Mienert, D., Oh, T.S., Yoo, H.I., Becker, K.D., Solid State Sci. 10, 768 (2008)CrossRef
Lee, S.H., Mizoguchi, T., Yamamoto, T., Kang, S.L., Ikuha, Y., Acta Mater. 55, 6535 (2007)CrossRef
Zhu, Y.L., Zheng, S.J., Chen, D., Ma, X.L., Thin Solid Films 518, 3669 (2010)CrossRef
Oh, J.M., Nam, S.M., Thin Solid Films 518, 6531 (2010)CrossRef
Babu, B.J., Madeswaran, G., Chen, X.L., Dhanasekaran, R., Mater. Sci. Eng. B 156, 36 (2009)CrossRef
Kamel, E.F., Gonon, P., Jomni, F., Yangui, B., J. Eur. Ceram. Soc. 27, 3807 (2007)CrossRef
Pullar, C.R., Penn, J.S., Wang, X., Reaney, I.M., Alford, N.M., J. Eur. Ceram. Soc. 29, 419 (2009)CrossRef
Abragam, A., Bleneay, B., Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970)Google Scholar
Sugano, S., Tanabe, Y., Kamimura, H., Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York, 1970)Google Scholar
Šroubek, Z., Ždánský, K., Czech. J. Phys. B 13, 309 (1963)CrossRef
Zítková, J., Ždánský, K., Šroubek, Z., Czech. J. Phys. B 17, 636 (1967)CrossRef
Laguta, V.V., Slipenyuk, M.A., Bykov, I.P., Glinchuk, M.D., Appl. Phys. Lett. 87, 022903 (2005)CrossRef
Griffith, J.S., The Theory of Transition-Metal Ions (Cambridge, London, 1964)Google Scholar
Lines, M.E., Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Oxford, London, 1977)Google Scholar
Yamaga, M., Yosida, T., Henderson, B., O’Donnell, K.P., Date, M., J. Phys.: Condens. Matter 4, 7285 (1992)
Hodgson, E.K., Fridovich, I., Biochem. Biophys. Res. Commun. 54, 270 (1973)CrossRef
Pilbrow, J.R., Transition Ion Electron Paramagnetic Resonance (Clarendon, Oxford, 1990)Google Scholar
Gourier, D., Colle, L., Lejus, M.A., Vivien, D., Moncorge, R., J. Appl. Phys. 63, 1144 (1988)CrossRef
Wu, S.Y., Gao, X.Y., Dong, H.N., J. Magn. Magn. Mater. 301, 67 (2006)CrossRef
Zheng, W.C., Wu, S.Y., Phys. Stat. Sol. B 214, 381 (1999)3.0.CO;2-L>CrossRef
Li, Z.M., Du, M.L., Physica B 233, 89 (1997)CrossRef
Wei, L.H., Wu, S.Y., Zhang, Z.H., Wang, H., Wang, X.F., Mod. Phys. Lett. B 22, 1739 (2008)CrossRef
Newman, D.J., Ng, B., Rep. Prog. Phys. 52, 699 (1989)CrossRef
Yu, W.L., Zhang, X.M., Yang, L.X., Zen, B.Q., Phys. Rev. B 50, 6756 (1994)
Newman, D.J., Pryce, D.C., Runciman, W.A., Am. Miner. 63, 1278 (1978)
Clementi, E., Raimondi, D.L., J. Chem. Phys. 38, 2686 (1963)CrossRef
Clementi, E., Raimondi, D.L., Reinhardt, W.P., J. Chem. Phys. 47, 1300 (1967)CrossRef
Zhang, Z.H., Wu, S.Y., Li, L.L., J. Mol. Struct. Theochem. 959, 113 (2010)CrossRef