Skip to main content Accessibility help
×
Home

Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas

  • J. McKenna (a1), J. Patel (a1), S. Mitra (a1), N. Soin (a1), V. Švrček (a2), P. Maguire (a1) and D. Mariotti (a1)...

Abstract

Two different atmospheric pressure microplasma systems are discussed and used for the synthesis and surface engineering of a range of nanomaterials. Specifically a gas-phase approach from vaporized tetramethylsilane has been used to synthesize silicon carbide nanoparticles with diameters below 10 nm. A different microplasma system that interfaces with a liquid solution has then been used for the synthesis of surfactant-free electrically stabilized gold nanoparticles with varying size. A similar microplasma-liquid system has been finally successfully used to tailor surface properties of silicon nanoparticles and to reduce graphene oxide into graphene. The synthesis and surface engineering mechanisms are also discussed.

Copyright

Corresponding author

References

Hide All
[1]Mariotti, D., Mohan Sankaran, R.. J. Phys. D: Appl. Phys. 43, 323001 (2010)
[2]Mariotti, D., Sankaran, R.M., J. Phys. D: Appl. Phys. 44, 174023 (2011)
[3]Mariotti, D., Lindstrom, H., Bose, A.C., Ostrikov, K., Nanotechnology 19, 495302 (2008)
[4]Mariotti, D., Ostrikov, K., J. Phys. D: Appl. Phys. 42, 092002 (2009)
[5]Svrček, V., Mariotti, D., Kondo, M., Appl. Phys. Lett. 97, 161502 (2010)
[6]Mariotti, D., McLaughlin, J.A., Maguire, P., Plasma Sources Sci. Technol. 13, 207 (2004)
[7]Mariotti, D., Shimizu, Y., Sasaki, T., Koshizaki, N., Appl. Phys. Lett. 89, 201502 (2006)
[8]Park, S.J., Eden, J.G., Appl. Phys. Lett. 81, 4127 (2002)
[9]Penache, C., Miclea, M., Brauning-Demian, A., Hohn, O., Schossler, S., Jahnke, T., Niemax, K., Schmidt, B.H., Plasma Sources Sci. Technol. 11, 476 (2002)
[10]Kurunczi, P., Abramzon, N., Figus, M., Becker, K., Acta Phys. Slovaca 54, 115 (2004)
[11]Wagner, A.J., Mariotti, D., Yurchenko, K.J., Das, T.K., Phys. Rev. 80, 065401 (2009)
[12]Sankaran, R.M., Giapis, K.P., Moselhy, M., Schoenbach, K.H., Appl. Phys. Lett. 83, 4728 (2003)
[13]Park, S.H., Eden, J.G., Chen, J., Liu, C., Appl. Phys. Lett. 85, 4869 (2004)
[14]Chiang, W.H., Richmonds, C., Sankaran, R.M., Plasma Sources Sci. Technol. 19, 034011 (2010)
[15]Nokazi, T., Sasaki, K., Ogino, T., Asahi, D., Okazaki, K., Nanotechnology 18, 235603 (2007)
[16]Sankaran, R.M., Holunga, D., Flagan, R.C., Giapis, K.P., Nano Lett. 5, 537 (2005)
[17]Chiang, W.H., Sankaran, R.M., Appl. Phys. Lett. 91, 121503 (2007)
[18]Aspenberg, P., Anttila, A., Konttinen, Y.T., Lappalainen, R., Goodman, S.B., Nordsletten, L., Santavirta, S., Biomaterials 17, 807 (1996)
[19]Santavirta, S., Takagi, M., Nordsletten, L., Anttila, A., Lappalainen, R.Y., Konttinen, T., Arch. Orthop. Trauma Surg. 118, 89 (1998)
[20]Fan, J.Y., Li, H.X., Jiang, J., So, L.K.Y., Lam, Y.W., Chu, P.K., Small 4, 1058 (2008)
[21]Fan, J.Y., Wu, X.L., Zhao, Q.P., Chu, P.K., Phys. Lett. A 360, 336 (2006)
[22]Amy, F., Chabal, Y.J.J., Chem. Phys. 119, 6201 (2003)
[23]Cicero, G., Catellani, A., Galli, G., Phys. Rev. Lett. 93, 016102 (2004)
[24]Lin, H., Gerbec, J.A., Sushchikh, M., McFarland, E.W., Nanotechnology 19, 325601 (2008)
[25]Jana, N.R., Gearheart, L., Murphy, C.J.J., Phys. Chem. B 19, 105 (2001)
[26]Sun, S., Adv. Mater. 18, 393 (2006)
[27]Hyeon, T., Chem. Commun. 8, 927 (2003)
[28]Sau, T.K., Rogach, A.-L., Adv. Mater. 22, 1805 (2010)
[29]Jones, M.-R., Millstone, J.-E., Giljohann, D.-A., Seferos, D.-S., Young, K.-L., Mirkin, C.-A., ChemPhysChem. 10, 1461 (2009)
[30]Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M., Parak, W.J., Chem. Soc. Rev. 37, 1896 (2008)
[31]El-Sayed, M.A., Huang, X., Jain, P.K., EI-Sayed, I.H., Nanomedicine 2, 681 (2007)
[32]Richmonds, C., Sankaran, R.M., Appl. Phys. Lett. 93, 131501 (2008)
[33]Link, S., EI-Sayed, M.-A.J., Phys. Chem. B 103, 8410 (1999)
[34]Kim, S.M., Kim, G.S., Lee, S.Y., Mater. Lett. 62, 4354 (2008)
[35]Philip, D., Spectrochimica Acta A 71, 80 (2008)
[36]Green, M.A., Adv. Mater. 13, 1019 (2001)
[37]Švrček, V., Mariotti, D., Nagai, T., Shibata, Y., Turkevych, I., Kondo, M.J., Phys. Chem. C 115, 5084 (2011)
[38]Timmerman, D., Izeddin, I., Stallinga, P., Yassevich, I.N., Gregorkiewicz, T., Nat. Photon. 2, 105 (2008)
[39]Fuechsle, M., Mahapatra, S., Zwanenburg, F.A., Friesen, M., Erikson, M.A., Simmons, M.Y., Nat. Nanotechnol. 5, 502 (2010)
[40]Zhenhui, K., Liu, Y., Lee, S.T., Nanoscale 3, 777 (2011)
[41]Kortshagen, U.J., Phys. D: Appl. Phys. 42, 113001 (2009)
[42]Gupta, A., Swihart, M.T., Wiggeres, H., Adv. Funct. Mater. 19, 696 (2009)
[43]Švrček, V., Mariotti, D., Kondo, M., Opt. Express 17, 520 (2009)
[44]Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)
[45]Zhou, Z., Brus, L., Friesner, R., Nano Lett. 3, 163 (2003)
[46]Guerra, R., Ossicini, S., Phys. Rev. B 81, 245307 (2010)
[47]Švrček, V., Slaoui, A., Muller, J.-C., J. Appl. Phys. 95, 3158 (2004)
[48]Park, S., Ruoff, R.S., Nat. Nanotechnol. 4, 217 (2009)
[49]Fanchini, G., Chhowalla, M., Nat. Nanotechnol. 3, 270 (2008)
[50]Abdelsayed, V., Moussa, S., Hassan, H.M., Aluri, H.S., Collinson, M.M., El-Shall, M.S., J. Phys. Chem. Lett. 1, 2804 (2010)
[51]Lee, S.W., Liang, D., Gao, X.P.A., Sankaran, R.M., Adv. Funct. Mater. XX, 1 (2011)
[52]Imanishi, A., Tamura, M., Kuwabata, S., Chem. Commun. 13, 1775 (2009)

Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas

  • J. McKenna (a1), J. Patel (a1), S. Mitra (a1), N. Soin (a1), V. Švrček (a2), P. Maguire (a1) and D. Mariotti (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed