Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T09:20:59.024Z Has data issue: false hasContentIssue false

Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas

Published online by Cambridge University Press:  28 October 2011

J. McKenna
Affiliation:
Nanotechnology and Advanced Materials Research Institute (NAMRI), University of Ulster, Shore Road Newtownabbey, Antrim, BT37 0QB, UK
J. Patel
Affiliation:
Nanotechnology and Advanced Materials Research Institute (NAMRI), University of Ulster, Shore Road Newtownabbey, Antrim, BT37 0QB, UK
S. Mitra
Affiliation:
Nanotechnology and Advanced Materials Research Institute (NAMRI), University of Ulster, Shore Road Newtownabbey, Antrim, BT37 0QB, UK
N. Soin
Affiliation:
Nanotechnology and Advanced Materials Research Institute (NAMRI), University of Ulster, Shore Road Newtownabbey, Antrim, BT37 0QB, UK
V. Švrček
Affiliation:
Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
P. Maguire
Affiliation:
Nanotechnology and Advanced Materials Research Institute (NAMRI), University of Ulster, Shore Road Newtownabbey, Antrim, BT37 0QB, UK
D. Mariotti*
Affiliation:
Nanotechnology and Advanced Materials Research Institute (NAMRI), University of Ulster, Shore Road Newtownabbey, Antrim, BT37 0QB, UK
Get access

Abstract

Two different atmospheric pressure microplasma systems are discussed and used for the synthesis and surface engineering of a range of nanomaterials. Specifically a gas-phase approach from vaporized tetramethylsilane has been used to synthesize silicon carbide nanoparticles with diameters below 10 nm. A different microplasma system that interfaces with a liquid solution has then been used for the synthesis of surfactant-free electrically stabilized gold nanoparticles with varying size. A similar microplasma-liquid system has been finally successfully used to tailor surface properties of silicon nanoparticles and to reduce graphene oxide into graphene. The synthesis and surface engineering mechanisms are also discussed.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mariotti, D., Mohan Sankaran, R.. J. Phys. D: Appl. Phys. 43, 323001 (2010)CrossRef
Mariotti, D., Sankaran, R.M., J. Phys. D: Appl. Phys. 44, 174023 (2011)CrossRef
Mariotti, D., Lindstrom, H., Bose, A.C., Ostrikov, K., Nanotechnology 19, 495302 (2008)CrossRef
Mariotti, D., Ostrikov, K., J. Phys. D: Appl. Phys. 42, 092002 (2009)CrossRef
Svrček, V., Mariotti, D., Kondo, M., Appl. Phys. Lett. 97, 161502 (2010)CrossRef
Mariotti, D., McLaughlin, J.A., Maguire, P., Plasma Sources Sci. Technol. 13, 207 (2004)CrossRef
Mariotti, D., Shimizu, Y., Sasaki, T., Koshizaki, N., Appl. Phys. Lett. 89, 201502 (2006)CrossRef
Park, S.J., Eden, J.G., Appl. Phys. Lett. 81, 4127 (2002)CrossRef
Penache, C., Miclea, M., Brauning-Demian, A., Hohn, O., Schossler, S., Jahnke, T., Niemax, K., Schmidt, B.H., Plasma Sources Sci. Technol. 11, 476 (2002)CrossRef
Kurunczi, P., Abramzon, N., Figus, M., Becker, K., Acta Phys. Slovaca 54, 115 (2004)
Wagner, A.J., Mariotti, D., Yurchenko, K.J., Das, T.K., Phys. Rev. 80, 065401 (2009)CrossRef
Sankaran, R.M., Giapis, K.P., Moselhy, M., Schoenbach, K.H., Appl. Phys. Lett. 83, 4728 (2003)CrossRef
Park, S.H., Eden, J.G., Chen, J., Liu, C., Appl. Phys. Lett. 85, 4869 (2004)CrossRef
Chiang, W.H., Richmonds, C., Sankaran, R.M., Plasma Sources Sci. Technol. 19, 034011 (2010)CrossRef
Nokazi, T., Sasaki, K., Ogino, T., Asahi, D., Okazaki, K., Nanotechnology 18, 235603 (2007)
Sankaran, R.M., Holunga, D., Flagan, R.C., Giapis, K.P., Nano Lett. 5, 537 (2005)CrossRef
Chiang, W.H., Sankaran, R.M., Appl. Phys. Lett. 91, 121503 (2007)CrossRef
Aspenberg, P., Anttila, A., Konttinen, Y.T., Lappalainen, R., Goodman, S.B., Nordsletten, L., Santavirta, S., Biomaterials 17, 807 (1996)CrossRef
Santavirta, S., Takagi, M., Nordsletten, L., Anttila, A., Lappalainen, R.Y., Konttinen, T., Arch. Orthop. Trauma Surg. 118, 89 (1998)CrossRef
Fan, J.Y., Li, H.X., Jiang, J., So, L.K.Y., Lam, Y.W., Chu, P.K., Small 4, 1058 (2008)CrossRefPubMed
Fan, J.Y., Wu, X.L., Zhao, Q.P., Chu, P.K., Phys. Lett. A 360, 336 (2006)CrossRef
Amy, F., Chabal, Y.J.J., Chem. Phys. 119, 6201 (2003)
Cicero, G., Catellani, A., Galli, G., Phys. Rev. Lett. 93, 016102 (2004)CrossRef
Lin, H., Gerbec, J.A., Sushchikh, M., McFarland, E.W., Nanotechnology 19, 325601 (2008)CrossRefPubMed
Jana, N.R., Gearheart, L., Murphy, C.J.J., Phys. Chem. B 19, 105 (2001)
Sun, S., Adv. Mater. 18, 393 (2006)CrossRef
Hyeon, T., Chem. Commun. 8, 927 (2003)CrossRef
Sau, T.K., Rogach, A.-L., Adv. Mater. 22, 1805 (2010)CrossRef
Jones, M.-R., Millstone, J.-E., Giljohann, D.-A., Seferos, D.-S., Young, K.-L., Mirkin, C.-A., ChemPhysChem. 10, 1461 (2009)CrossRef
Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M., Parak, W.J., Chem. Soc. Rev. 37, 1896 (2008)CrossRef
El-Sayed, M.A., Huang, X., Jain, P.K., EI-Sayed, I.H., Nanomedicine 2, 681 (2007)
Richmonds, C., Sankaran, R.M., Appl. Phys. Lett. 93, 131501 (2008)CrossRef
Link, S., EI-Sayed, M.-A.J., Phys. Chem. B 103, 8410 (1999)CrossRef
Kim, S.M., Kim, G.S., Lee, S.Y., Mater. Lett. 62, 4354 (2008)CrossRef
Philip, D., Spectrochimica Acta A 71, 80 (2008)CrossRef
Green, M.A., Adv. Mater. 13, 1019 (2001)3.0.CO;2-I>CrossRef
Švrček, V., Mariotti, D., Nagai, T., Shibata, Y., Turkevych, I., Kondo, M.J., Phys. Chem. C 115, 5084 (2011)CrossRef
Timmerman, D., Izeddin, I., Stallinga, P., Yassevich, I.N., Gregorkiewicz, T., Nat. Photon. 2, 105 (2008)CrossRef
Fuechsle, M., Mahapatra, S., Zwanenburg, F.A., Friesen, M., Erikson, M.A., Simmons, M.Y., Nat. Nanotechnol. 5, 502 (2010)CrossRef
Zhenhui, K., Liu, Y., Lee, S.T., Nanoscale 3, 777 (2011)
Kortshagen, U.J., Phys. D: Appl. Phys. 42, 113001 (2009)CrossRef
Gupta, A., Swihart, M.T., Wiggeres, H., Adv. Funct. Mater. 19, 696 (2009)CrossRef
Švrček, V., Mariotti, D., Kondo, M., Opt. Express 17, 520 (2009)CrossRef
Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)CrossRef
Zhou, Z., Brus, L., Friesner, R., Nano Lett. 3, 163 (2003)CrossRef
Guerra, R., Ossicini, S., Phys. Rev. B 81, 245307 (2010)CrossRef
Švrček, V., Slaoui, A., Muller, J.-C., J. Appl. Phys. 95, 3158 (2004)CrossRef
Park, S., Ruoff, R.S., Nat. Nanotechnol. 4, 217 (2009)CrossRef
Fanchini, G., Chhowalla, M., Nat. Nanotechnol. 3, 270 (2008)
Abdelsayed, V., Moussa, S., Hassan, H.M., Aluri, H.S., Collinson, M.M., El-Shall, M.S., J. Phys. Chem. Lett. 1, 2804 (2010)CrossRef
Lee, S.W., Liang, D., Gao, X.P.A., Sankaran, R.M., Adv. Funct. Mater. XX, 1 (2011)
Imanishi, A., Tamura, M., Kuwabata, S., Chem. Commun. 13, 1775 (2009)CrossRef