Skip to main content Accessibility help
×
Home

Studies on Al–Mg solid solutions using electrical resistivity and microhardness measurements

  • A. Gaber (a1), N. Afify (a1), S. M. El-Halawany (a1) and A. Mossad (a1)

Abstract

Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al–Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as $\Delta\rho_{\rm all}=64.66\ c(1-c)~\mu\Omegarm$  cm. In addition, both the temperature coefficient of resistivity, α all and the relaxation time of the free electrons τ all in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, η, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature θ decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation ΔHV s = 135.5C 0.778 MPa which is comparable to the theory of solid solution hardening for all alloys; ΔHV sC 0.5−0.67 MPa.

Copyright

Corresponding author

References

Hide All
[1] C.J. Peel, B. Evans, C.A. Baker, D.A. Bennett, P.J. Gregson, H.M. Flower, Proceedings of the Second Inter. Aluminum-Lithium Conference, Monterey, California, April 1983, Met. Soc. AIME (1984), p. 363.
[2] Gaber, A., Afify, N., Abdel-Latief, A.Y., Mostafa, M.S., Solid State Commun. 86, 679 (1993).
[3] R.M. Brick, R.B. Gordon, A. Phillips, Structure and properties of alloys (Mc Graw-Hill, Inc., New York, 1965), p. 149.
[4] Panseri, C., Federighi, T., Acta Metall. 8, 217 (1960).
[5] Smugeresky, J.E., Herman, H., Pollack, S.R., Acta Metall. 17, 883 (1969).
[6] Herman, H., Cohen, J.B., Fine, M.E., Acta Metall. 11, 43 (1963).
[7] Merlin, J., Manzioni, V.M., Fouquet, F., Vigier, G., Mem. Sci. Rev. Metall. 75, 327 (1987).
[8] Luiggi, N., Simson, J.P., Guyot, P., Acta Metall. 28, 1115 (1980).
[9] Gaber, A., Afify, N., J. Mater. Sci. 27, 1347 (1992).
[10] Hillel, A.J., Edwards, J.T., Wilkes, P., Philos. Mag. 32, 189 (1975).
[11] Radomsky, C., Loffler, H., Phys. Stat. Sol. (a) 50, 123 (1978).
[12] Laslaz, G., Guyot, P., Acta Metall. 25, 277 (1977).
[13] Laslaz, G., Kostorz, G., Roth, M., Guyot, P., Stewart, R.J., Phys. Stat. Sol. (a) 41, 577 (1977).
[14] Inoue, H., Sato, T., Kojima, Y., Takahashi, T., Metall. Trans. A 12, 1429 (1981).
[15] Juhssz, A., Kovscs, I., Lendvai, J., Tasnsdi, P., J. Mater. Sci. 20, 624 (1985).
[16] Radomsky, M., Kabisch, O., Loffler, H., Lendvai, J., Ungsr, T., Kovscs, I., Honyek, G., J. Mater. Sci. 14, 2906 (1979).
[17] Detert, K., Thomas, I., Acta Metall. 12, 431 (1964).
[18] Gaber, A., Afify, N., Mostafa, M.S., J. Phys. D: Appl. Phys. 23, 1119 (1990).
[19] Juhssz, A., Tasnsdi, P., Kovscs, I., Ungsr, T., J. Mater. Sci. 16, 367 (1981).
[20] G.I. Epifanov, Solid State Physics (Mir Moscow, 1979).
[21] L.F. Mondolfo, Aluminium Alloys, Structure and Properties (Butterworths, London, 1967).
[22] Logunov, A.V., Zverev, A.F., Inzhen.-Fis. Z. 15, 1114 (1969).
[23] Handbook of Chemistry and Physics, edited by R.C. Weast (CRC, Cleveland, OH, 1987).
[24] Moore, J.P., McElroy, D.L., Graves, R.S., Can. J. Phys. 45, 384 (1967).
[25] A.Y. Abdel-Latief, Ph.D. thesis, Assiut Univ., Assiut, Egypt, 1983.
[26] Gaber, A., J. Mater. Sci.: Mater. Electr. 1, 137 (1990).
[27] Sayed, H. EL, Kovscs, I., Phys. Stat. Solid. (a) 24, 123 (1974).
[28] P. Haasen, Dislocations in Solids, edited by F.R.N. Nabarro (North-Holland, Amesterdam, 1979), Vol. 4.

Keywords

Studies on Al–Mg solid solutions using electrical resistivity and microhardness measurements

  • A. Gaber (a1), N. Afify (a1), S. M. El-Halawany (a1) and A. Mossad (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.