Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T18:29:32.274Z Has data issue: false hasContentIssue false

Simulation of mesa structures for III-V semiconductors under ion beam etching

Published online by Cambridge University Press:  15 June 1999

L. Houlet
Affiliation:
Laboratoire des Plasmas et des Couches Minces, Institut des Matériaux de Nantes (UMR 6502 du CNRS), Université de Nantes, B.P. 32229, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
A. Rhallabi*
Affiliation:
Laboratoire des Plasmas et des Couches Minces, Institut des Matériaux de Nantes (UMR 6502 du CNRS), Université de Nantes, B.P. 32229, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
G. Turban
Affiliation:
Laboratoire des Plasmas et des Couches Minces, Institut des Matériaux de Nantes (UMR 6502 du CNRS), Université de Nantes, B.P. 32229, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
Get access

Abstract

An argon Ion Beam Etching (IBE) simulation model has been developed to investigate the mesa profile evolution in III-V semiconductors' technology. Particular attention has been focused on the sputtering yield angular dependence effect, on the influence of the material and 2D-morphology of the mask onto the pattern transfer. Experimental sputtering yield versus ion incidence angle is injected into the simulation model. The equations which govern the surface evolution, stem from the current method of characteristics. The simulated profiles show that the trenching phenomenon can appear by only considering the variation of the sputtering yield versus the etched surface canting. This is obtained when neither the ion reflection nor the electric field line deviation are taken into account. On the other hand, the slope transfer from the mask to the GaAs and InP substrates is studied.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, J.W., Crokett, R.V., Pearton, S.J., J. Vac. Sci. Technol. B 14, 1752 (1996). CrossRef
Ren, F., Lothian, J.R., Pearton, S.J., Abernathy, C.R., Wisk, P., Fullowan, T.R., Tseng, B., Chu, S.N.G., Chen, Y.K., Yang, C., Fu, T., Brozovitch, R., Lin, H.H., Henning, C.L., Henry, T., J. Vac. Sci. Technol. B 12, 2916 (1994). CrossRef
Uenishi, Y., Jpn J. Appl. Phys. 34, 2037 (1995). CrossRef
Abraham-Shrauner, B., J. Vac. Sci. Technol. B 12, 2347 (1994). CrossRef
Shaqfeh, E.S.G., Jurgendsen, C.W., J. Appl. Phys. 66, 4664 (1989). CrossRef
Singh, V.K., Shaqfeh, E.S.G., McVittie, J.P., J. Vac. Sci. Technol. B 10, 1091 (1992). CrossRef
W. Chen, B. Abraham-Shrauner, J. Appl. Phys. 81, (1997).
Levinson, J.A., Shaqfeh, E.S.G., Balooch, M., Hamza, A.V., J. Vac. Sci. Technol. A 15, 1902 (1997). CrossRef
Arnold, J.C., Sawin, H.H., Dalvie, M., Hamaguchi, S., J. Vac. Sci. Technol. A 12, 620 (1994). CrossRef
Hamaguchi, S., Dalvie, M., Farouki, R.T., Sethuraman, S., J. Appl. Phys. 74, 5172 (1993). CrossRef
Harper, J.M.E., Cuomo, J.J., Leavy, P.A., Summe, G.M., Kaufman, H.R., Bresnock, F.J., J. Electrochem. Soc. 128, 1077 (1981). CrossRef
Arnold, J.C., Sawin, H.H., J. Appl. Phys. 70, 5314 (1991). CrossRef
Bollinger, D., Fink, R., Solid State Technol. 23, 97 (1980).
Houlet, L., Rhallabi, A., Turban, G., Proc. Mat. Res. Soc. Symp. 490, 225 (1998). CrossRef
Dalvie, M., Farouki, R.T., Hamagushi, S., IEEE Trans. Electron. Dev. 39, 1090 (1992). CrossRef
Pelka, J., Weiss, M., Hoppe, W., Mewes, D., J. Vac. Sc. Technol. B 7, 1483 (1989). CrossRef
K. Ketata, S. Koumetz, M. Ketata, M. Debrie, Proc. Mat. Res. Soc. 324 (1994).
Lee, R.E., J. Vac. Sci. Technol. 16, 164 (1979). CrossRef
Somekh, S., J. Vac. Sci. Technol. 13, 1003 (1976). CrossRef
Bouadma, N., Devoldere, P., Jusserand, B., Ossart, P., Appl. Phys. Lett. 48, 1285 (1986). CrossRef