Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T07:31:07.975Z Has data issue: false hasContentIssue false

Similarity and Boubaker Polynomials Expansion Scheme BPES comparative solutions to the heat transfer equation for incompressible non-Newtonian fluids: case of laminar boundary energy equation

Published online by Cambridge University Press:  11 August 2011

L.C. Zheng
Affiliation:
Department of Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083, P.R. China
X.X. Zhang
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
K. Boubaker*
Affiliation:
Équipe de Physique des dispositifs à Semiconducteurs, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
U. Yücel
Affiliation:
Department of Mathematics, Faculty of Science and Letters, Pamukkale University, Denizli 20020, Turkey
E. Gargouri-Ellouze
Affiliation:
Institut Supérieur des Études Technologiques de Radès (High Institute of Technological Studies of Rades), Rades Médina 2098, Tunisia
A. Yıldırım
Affiliation:
Ege University, Department of Mathematics, 35100 Bornova, İzmir, Turkey
Get access

Abstract

In this paper, a new model is proposed for the heat transfer characteristics of power law non- Newtonian fluids. The effects of power law viscosity on temperature field were taken into account by assuming that the temperature field is similar to the velocity field with modified Fourier’s law of heat conduction for power law fluid media. The solutions obtained by using Boubaker Polynomials Expansion Scheme (BPES) technique are compared with those of the recent related similarity method in the literature with good agreement to verify the protocol exactness.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasius, H., Z. Math. Phys. 56, 1 (1908)
Schlichting, H., Boundary Layer Theory (McGraw-Hill, New York, 1979)Google Scholar
Schowalter, W.R., Adv. Chem. Eng. 6, 24 (1960)
Acrivos, A., Shah, M.J., Petersen, E.E., Adv. Chem. Eng. 6, 312 (1960)
Nachman, A., Callegari, A., SIAM J. Appl. Math. 38, 275 (1980)CrossRef
Howell, T.G., Jeng, D.R., De Witt, K.J., Int. J. Heat Mass Transfer 40, 1853 (1997)CrossRef
Rao, J.H., Jeng, D.R., De Witt, K.J., Int. J. Heat Mass Transfer 42, 2837 (1999)CrossRef
Wang, T.Y., Int. Comm. Heat Mass Transfer 22, 369 (1995)CrossRef
Wang, T.Y., Int. J. Heat Fluid Flow 16, 56 (1995)CrossRef
Hady, F.M., Appl. Math. Comput. 68, 105 (1995)
Luna, N., Méndez, F., Treviño, C., Int. J. Heat Fluid Flow 45, 655 (2002)
Hassanien, I.A., Abdullah, A.A., Gorla, R.S.R., Math. Comput. Model. 28, 105 (1998)CrossRef
Kumari, K., Pop, I., Takhar, H.S., Int. J. Heat Fluid Flow 18, 625 (1997)CrossRef
Akcay, M., Adil Yükselen, M., Arch. Appl. Mech. 69, 215 (1999)
Pinarbasi, A., Imal, M., J. Non-Newtonian Fluid Mech. 127, 67 (2005)CrossRef
Chen, C.-H., J. Non-Newtonian Fluid Mech. 135, 128 (2005)CrossRef
Wang, C., J. Non-Newtonian Fluid Mech. 138, 161 (2006)CrossRef
Zheng, L.C., Zhang, X.X., Lu, C.Q., Chinese Phys. Lett. 23, 3301 (2006)
Zheng, L.C., Zhang, X.X., Ma, L.X., Chinese Phys. Lett. 25, 195 (2008)
Li, B.T., Zheng, L.C., Zhang, X.X., Numerical Methods for Solving Energy Equations of Dilatant Fluid Flow, in 3rd Int. Conf. on Computational Sciences and Optimization, Huangshan, Anhui, China, 2010, pp. 1114
Li, B.T., Zheng, L.C., Zhang, X.X., Numerical Investigation on Heat Transfer of Power Law Fluids in a Pipe with Constant Wall Temperature, in World Congress on Engineering 2010 (WCE 2010), London, UK, 2010, pp. 18641866.
Li, B.T., Zheng, L.C., Zhang, X.X., Unsteady Forced Convection Heat Transfer for Power Law Fluids in a Pipe, in International Heat Transfer Conference (IHTC14), Washington, DC, USA, 2010, pp. 289292
Belhadj, A., Onyango, O.F., Rozibaeva, N., J. Thermophys. Heat Transf. 23, 639 (2009)CrossRef
Tabatabaei, S., Zhao, T., Awojoyogbe, O., Moses, F., Heat Mass Transf. 45, 1247 (2009)CrossRef
Ghanouchi, J., Labiadh, H., Boubaker, K., Int. J. Heat Technol. 26, 49 (2008)
Fridjine, S., Amlouk, M., Mod. Phys. Lett. B 23, 2179 (2009)CrossRef
Mannevile, S., Becu, L., Colin, A., Eur. Phys. J. Appl. Phys. 28, 361 (2004)CrossRef
Berest, P., Rakotomalala, N., Hulin, J.P., Salin, D., Eur. Phys. J. Appl. Phys. 6, 309 (1999)CrossRef
Lagrée, P.Y., Eur. Phys. J. Appl. Phys. 37, 105 (2007)
Drochon, A., Eur. Phys. J. Appl. Phys. 37, 105 (2007)