Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T08:19:11.736Z Has data issue: false hasContentIssue false

A self-powered switching circuit for piezoelectric energy harvesting with velocity control

Published online by Cambridge University Press:  15 February 2012

Y.-Y. Chen
Affiliation:
SATIE Lab (Systeme et Application des Technologies de l’Information et de l’Energie), UniverSud, ENS Cachan, France Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, ROC
D. Vasic*
Affiliation:
SATIE Lab (Systeme et Application des Technologies de l’Information et de l’Energie), UniverSud, ENS Cachan, France Université de Cergy-Pontoise, Neuville/Oise, France
F. Costa
Affiliation:
SATIE Lab (Systeme et Application des Technologies de l’Information et de l’Energie), UniverSud, ENS Cachan, France IUFM de Créteil, Université Paris 12, St Denis, France
W.-J. Wu
Affiliation:
Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, ROC
C.-K. Lee
Affiliation:
Industrial Technology Research Institute of Taiwan, Taiwan, ROC
Get access

Abstract

The rapid development of low-power consumption electronics and the possibility of harvesting energy from environmental sources can make totally autonomous wireless devices. Using piezoelectric materials to convert the mechanical energy into electrical energy for batteries of wireless devices in order to extend the lifetime is the focus in many researches in the recent years. It is important and efficient to improve the energy harvesting by designing an optimal interface between piezoelectric device and the load. In this paper, a self-powered piezoelectric energy harvesting device is proposed based on the velocity control synchronized switching harvesting on inductor technique (V–SSHI). Comparing to the standard full bridge rectifier technique, the synchronized switching harvesting on inductor (SSHI) technique can highly improve harvesting efficiency. However, in real applications when the energy harvesting device is associated with wireless sensor network (WSN), the SSHI technique needs to be implemented and requires being self-powered. The conventional technique to implement self-powered SSHI is to use bipolar transistors as voltage peak detector. In this paper, a new self-powered device is proposed, using velocity control to switch the MOSFET more accurately than in the conventional technique. The concept of design and the theoretical analysis are presented in detail. Experimental results are examined.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yuse, K., Monnier, T., Petit, L., Lefeuvre, E., Richard, C., Guyomar, D., J. Intell. Mater. Syst. Struct. 19, 387 (2008)CrossRef
Mathuna, C.O., O’Donnell, T., Martinez-Catala, R.V., Rohan, J., O’Flynn, B., Talanta 75, 613 (2008)CrossRef
Lallart, M., Guyomar, D., Jayet, Y., Petit, L., Lefeuvre, E., Monnier, T., Guy, P., Richard, C., Sens. Actuators A: Phys. 147, 263 (2008)CrossRef
Guyomar, D., Jayet, Y., Petit, L., Lefeuvre, E., Monnier, T., Richard, C., Lallart, M., Sens. Actuators A: Phys. 138, 151 (2007)CrossRef
Paradiso, J.A., Starner, T., IEEE Pervasive Comput. 4, 18 (2005)CrossRef
Roundy, S., Wright, P.K., Smart Mater. Struct. 13, 1131 (2004)CrossRef
Meninger, S., Mur-Miranda, J.O., Amirtharajah, R., Chandrakasan, A., Lang, J.H., IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9, 64 (2001)CrossRef
Amirtharajah, R., Chandrakasan, A.P., IEEE J. Solid-State Circuits 33, 687 (1998)CrossRef
Ottman, G.K., Hofmann, H.F., Bhatt, A.C., Lesieutre, G.A., IEEE Trans. Power Electron. 17, 669 (2002)CrossRef
Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Smart Mater. Struct. 18 (2009), DOI: 10.1088/0964-1726/18/8/085023CrossRef
Mitcheson, P.D., Green, T.C., Yeatman, E.M., Microsyst. Technol. Micro-Nanosyst.-Inf. Storage Process. Syst. 13, 1629 (2007)
Lefeuvre, E., Badel, A., Benayad, A., Lebrun, L., Richard, C., Guyomar, D., J. Phys. IV 128, 177 (2005)
Guan, M.J., Liao, W.H., Smart Mater. Struct. 16, 498 (2007)CrossRef
Badel, A., Guyomar, D., Lefeuvre, E., Richard, C., J. Intell. Mater. Syst. Struct. 16, 889 (2005)CrossRef
Guyomar, D., Badel, A., Lefeuvre, E., Richard, C., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 584 (2005)CrossRef
Lefeuvre, E., Badel, A., Richard, C., Guyomar, D., J. Intell. Mater. Syst. Struct. 16, 865 (2005)CrossRef
Badel, A., Guyomar, D., Lefeuvre, E., Richard, C., J. Intell. Mater. Syst. Struct. 17, 831 (2006)CrossRef
Richard, C., Guyomar, D., Audigier, D., Ching, G., in Proc. SPIE: Smart Structures and Materials 1999: Passive Damping and Isolation, San Diego, CA, 1999, vol. 3672, pp. 104111
Richard, C., Guyomar, D., Audigier, D., Bassaler, H., in Proc. SPIE: Smart Structures and Materials 2000: Damping and Isolation, San Diego, CA, 2000, vol. 3989, pp. 288299
Ng, T.H., Liao, W.H., J. Intell. Mater. Syst. Struct. 16, 785 (2005)CrossRef
Lallart, M., Guyomar, D., Smart Mater. Struct. 17, 035030 (2008)CrossRef
Liang, J.R., Liao, W.-H., in Int. Conf. on Information and Automation, ICIA’09, 2009, pp. 945950