Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T04:33:46.275Z Has data issue: false hasContentIssue false

Scaling prospects in mechanical energy harvesting with piezo nanowires*

Published online by Cambridge University Press:  05 July 2013

Gustavo Ardila*
Affiliation:
IMEP-LAHC, Joint Research Unit, CNRS/Grenoble-INP/Université Joseph Fourier/Université de Savoie Grenoble-INP/Minatec, 3 parvis Louis Néel, Grenoble, France
Ronan Hinchet
Affiliation:
IMEP-LAHC, Joint Research Unit, CNRS/Grenoble-INP/Université Joseph Fourier/Université de Savoie Grenoble-INP/Minatec, 3 parvis Louis Néel, Grenoble, France
Mireille Mouis
Affiliation:
IMEP-LAHC, Joint Research Unit, CNRS/Grenoble-INP/Université Joseph Fourier/Université de Savoie Grenoble-INP/Minatec, 3 parvis Louis Néel, Grenoble, France
Laurent Montès
Affiliation:
IMEP-LAHC, Joint Research Unit, CNRS/Grenoble-INP/Université Joseph Fourier/Université de Savoie Grenoble-INP/Minatec, 3 parvis Louis Néel, Grenoble, France
Get access

Abstract

The combination of 3D processing technologies, low power circuits and new materials integration makes it conceivable to build autonomous integrated systems, which would harvest their energy from the environment. In this paper, we focus on mechanical energy harvesting and discuss its scaling prospects toward the use of piezoelectric nanostructures, able to be integrated in a CMOS environment. It is shown that direct scaling of present MEMS-based methodologies would be beneficial for high-frequency applications only. For the range of applications which is presently foreseen, a different approach is needed, based on energy harvesting from direct real-time deformation instead of energy harvesting from vibration modes at or close to resonance. We discuss the prospects of such an approach based on simple scaling rules

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble – ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

References

Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Smart Mater. Struct. 17, 043001 (2008)CrossRef
Nechibvute, A., Chawanda, A., Luhanga, P., Smart Mater. Res. 2012 (2012)
Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C., Proc. IEEE 96, 1457 (2008)CrossRef
Xu, S., et al., Nanotechnology 5, 366 (2010)
Zhu, G., Yang, R., Wang, S., Wang, Z.L., Nano Lett. 10, 3151 (2010)CrossRef
Qi, Y., McAlpine, M.C., Energy Environ. Sci. 3, 1275 (2010)CrossRef
Zhu, D., Tudor, M.J., Beeby, S.P., Meas. Sci. Technol. 21, 022001 (2010)CrossRef
Marzencki, M., Ammar, Y., Basrour, S., Sens. Actuators A 145–146, 363 (2008)CrossRef
Zhao, M.H., Wang, Z.L., Mao, S.X., Nano Lett. 4, 587 (2004)CrossRef
Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L., Nano Lett. 10, 726 (2010)CrossRef
Agrawal, R., Espinosa, H.D., Nano Lett. 11, 786 (2011)CrossRef
Xu, S., Poirier, G., Yao, N., Nano Lett. 12, 2238 (2012)CrossRef
Yuan, D., Guo, R., Wei, Y., Wu, W., Ding, Y., Wang, Z.L., Das, S., Adv. Func. Mater. 20, 3484 (2010)CrossRef
Wang, X.D., Song, J.H., Li, P., Ryou, J.H., Dupuis, R.D., Summers, J., Wang, Z.L., J. Am. Chem. Soc. 127, 7920 (2005)CrossRef
Lin, S.S., Hong, J.I., Song, J.H., Zhu, Y., He, H.P., Xu, Z., Wei, Y.G., Ding, Y., Snyder, R.L., Wang, Z.L., Nano Lett. 9, 3877 (2009)CrossRef
Xu, S., Wei, Y.G., Kirkham, M., Liu, J., Mai, W.J., Snyder, R.L., Wang, Z.L., J. Am. Chem. Soc. 130, 14958 (2008)CrossRef
Zhong, Z., Qian, F., Wang, D., Lieber, C.M., Nano Lett. 3, 343 (2003)CrossRef
Songmuang, R., Landré, O., Daudin, B., Appl. Phys. Lett. 91, 251902 (2007)CrossRef
Huang, C.-T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., Wang, Z.L., J. Am. Chem. Soc. 132, 4766 (2010)CrossRef
Alloing, B., Vézian, S., Tottereau, O., Vennéguès, P., Beraudo, E., Zuniga-Péreza, J., Appl. Phys. Lett. 98, 011914 (2011)CrossRef
Minary-Jolandan, M., Bernal, R.A., Kuljanishvili, I., Parpoil, V., Espinosa, H.D., Nano Lett. 8, 970 (2012)CrossRef
Young, W., Budynas, R., Roark’s Formulas for Stress and Strain, 7th edn. (McGraw-Hill, 2002)Google Scholar
Ni, H., Li, X., Cheng, G., Klie, R., J. Mater. Res. 21, 11 (2006)CrossRef
Gao, P.X., Song, J., Liu, J., Wang, Z.L., Adv. Mater. 19, 67 (2007)CrossRef
Abramson, A.R., et al., J. Micro. Systems 13, 3 (2004)
Gao, Y.F., Wang, Z.L., Nano Lett. 7, 2499 (2007)CrossRef
Hinchet, R., Ferreira, J., Keraudy, J., Ardila, G., Pauliac-Vaujour, E., Mouis, M., Montès, L., in IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, 2012
Hersee, S.D., Sun, X., Wang, X., Nano Lett. 6, 1808 (2006)CrossRef
Nakashima, R., Watanabe, K., Lee, Y., Kim, B.-S., Kim, I.-S., Adv. Pol. Tech. 32, E44 (2011)CrossRef
Chen, X., Li, A., Yao, N., Shi, Y., Appl. Phys. Lett. 99, 193102 (2011)CrossRef
Hoffmann, S., et al., Nanotechnology 18, 205503 (2007)CrossRef
Xu, X., et al., Nanotechnology 22, 105704 (2011)CrossRef