Skip to main content Accessibility help
×
Home

Recent advances in the understanding of homogeneous dielectric barrier discharges

  • F. Massines (a1), N. Gherardi (a2) (a3), N. Naudé (a2) (a3) and P. Ségur (a2) (a3)

Abstract

This paper is a state of the art of the understanding on the physics of homogeneous dielectric barrier discharges at atmospheric pressure. It is based on the analysis of present and previous work about the behavior of these discharges and the conditions to get them. Mechanisms controlling the homogeneity during gas breakdown and discharge development are successively discussed. The breakdown has to be a Townsend one, the ionization has to be slow enough to avoid a large avalanche development. During the breakdown, the discharge homogeneity is related to the ratio of the secondary emission at the cathode (γ coefficient) on the ionization in the gas bulk (α coefficient). Higher is this ratio, higher is the pressure × gas gap product (Pd) value for which a Townsend breakdown is obtained. Among the phenomena enhancing the secondary emission there is the negative charge of the dielectric on the cathode surface, the trapping of ions in the gas and the existence of excited state having a long lifetime compared to the time between two consecutive discharges. The first phenomenon is always present when the electrodes are covered by a solid dielectric, the second one is related to the formation of a positive column and the third one is specific of the gas. During the discharge development, the homogeneity is mainly controlled by the voltage or the current imposed by the electrical circuit/electrode configuration and by the gas ability to be slowly ionized. Larger is the contribution of a multiple step ionization process like Penning ionization, higher will be the working domain of the discharge. A decrease of the gas voltage during the discharge development is a solution to enhance the contribution of this process. After 20 years of research a lot of mechanisms have been understood however there is still open questions like the nature of the Inhibited homogeneous DBD, surface energy transfers, role of attachment and detachment...

Copyright

Corresponding author

References

Hide All
[1] Kogelschatz, U., Eliasson, B., Egli, W., Pure Appl. Chem. 71, 1819 (1999)
[2] Kogelschatz, U., Plasma Chem. Plasma Process. 23, 1 (2003)
[3] Von Engel, A., Seeliger, R., Steenbeck, M., Z. Phys. 85, 144 (1933)
[4] Bartnikas, R., J. Appl. Phys. 40, 1974 (1969)
[5] Kanazawa, S., Kogoma, M., Moriwaki, T., Okazaki, S., J. Phys. D: Appl. Phys. 21, 838 (1988)
[6] S. Okazaki, M. Kogoma, H. Uchimaya, in Proc. 3rd Int. Symp. High Pressure Low Temp. Plasma Chem., Hakone III, Strasbourg, France (1991), p. 101
[7] N. Kanda, M. Kogoma, H. Jinno, H. Uchiyama, S. Okazaki, in Proc. 10th Int. Symp. Plasma Chemistry, Vol. 3 (1991), p. 2
[8] Okazaki, S., Kogoma, M., Uehara, M., Kimura, Y., J. Phys. D: Appl. Phys. 26, 889 (1993)
[9] R. Messaoudi, F. Massines, A. Younsi, B. Despax, C. Mayoux, in Proc. 10th Int. Conf. Gas Discharges and their Appl. (GD'92), Swansea, UK, 1992, pp. 318–321
[10] F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, P. Ségur, in Proc. 10th Int. Conf. Gas Discharges and their Appl. (GD'92), Swansea, UK, 1992, pp. 730–733
[11] Massines, F., Rabehi, A., Decomps, Ph., Ben Gadri, R., Ségur, P., Mayoux, Ch., J. Appl. Phys. 38, 2950 (1998)
[12] Enache, I., Naudé, N., Cambronne, J.P., Gherardi, N., Massines, F., Eur. Phys. J. Appl. Phys. 33, 15 (2006)
[13] Gherardi, N., Massines, F., IEEE Trans. Plasma Sci. 29, 536 (2001)
[14] Massines, F., Ségur, P., Gherardi, N., Khamphan, C., Ricard, A., Surf. Coat. Technol. 174-175, 8 (2003)
[15] Naudé, N., Cambronne, J.P., Gherardi, N., Massines, F., J. Phys. D: Appl. Phys. 38, 530 (2005)
[16] Massines, F., Gouda, G., J. Phys. D: Appl. Phys. 31, 3411 (1998)
[17] Massines, F., Gouda, G., Gherardi, N., Duran, M., Croquesel, E., Plasmas Polym. 6, 35 (2001)
[18] Gherardi, N., Martin, S., Massines, F., J. Phys. D: Appl. Phys. 33, L104-8 (2000)
[19] Martin, S., Massines, F., Gherardi, N., Jimenez, C., Surf. Coat. Technol. 177-178, 693 (2004)
[20] Massines, F., Gherardi, N., Fornelli, A., Martin, S., Surf. Coat. Technol. 200, 1855 (2005)
[21] Tsai, P., Wadsworth, L., Roth, J.R., Textile Res. J. 67, 359 (1997)
[22] Roth, J.R., Chen, Z., Tsai, P.P.-Y., Acta Metallurgica Sinica 14, 391 (2001)
[23] Roth, J.R., Phys. Plasmas 12, 5-2 (2005)
[24] Roth, J.R., Rahel, J., Dai, X., Sherman, D.M., J. Phys. D: Appl. Phys. 38, 555 (2005)
[25] Kelly-Wintenberg, K., Montie, T.C., Brickman, T.C., Roth, J.R., Carr, A.K., Sorge, K., Wadsworth, L.C., Tsai, P.P.-Y., J. Ind. Microbiol. Biotechnol. 2, 69 (1998)
[26] Montie, T.C., Kelly-Wintenberg, K., Roth, J.R., IEEE Trans. Plasma Sci. 28, 41 (2000)
[27] Roth, J.R., Sherman, D.M., Wilkinson, S.P., AIAA J. 38, 1166 (2000)
[28] Roth, J.R., Phys. Plasmas 10, 5 (2003)
[29] Laroussi, M., Alexeff, I., Richardson, J.P., Dyer, F., IEEE Trans. Plasma Sci. 30, 1 (2002)
[30] Terajima, T., Koinuma, H., Appl. Surf. Sci. 223, 259 (2004)
[31] Aldea, E., Van de Sanden, M.C.M., Peeters, P., de Vries, H., Surf. Coat. Technol. 200, 46 (2005)
[32] Trunec, D., Brablec, A., Stastny, F., Contrib. Plasma Phys. 38, 435 (1998)
[33] Tochikubo, F., Chiba, T., Watanabe, T., Jpn J. Appl. Phys. 38, 5244 (1999)
[34] Miralai, S.F., Monette, E., Bartnikas, R., Czeremuszkin, G., Latreche, M., Wertheimer, M.R., Plasmas Polym. 5, 63 (2000)
[35] Nozaki, T., Miyazaki, Y., Unno, Y., Okazaki, K., J. Phys. D: Appl. Phys. 34, 3383 (2001)
[36] Yu.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Phys. D: Appl. Phys. 35, 751 (2002)
[37] M. Madani, A. Bogaerts, R. Gijbels, D. Vangeneugden, in Proc. 8th Int. Symp. High Pressure Low Temp. Plasma Chem., Hakone VIII, Puhajarve, Estonia (2002), pp. 130–133
[38] Radu, I., Bartnikas, R., Wertheimer, M.R., J. Phys. D: Appl. Phys. 36, 1284 (2003)
[39] Yu.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Phys. D: Appl. Phys. 36 (2003)
[40] Callebaut, T., Kochetov, I., Akishev, Yu., Napartovich, A., Leys, C., Plasma Sour. Sci. Technol. 13, 245 (2004)
[41] Mangolini, L., Anderson, C., Heberlein, J., Kortshagen, U., J. Phys. D: Appl. Phys. 37, 1021 (2004)
[42] Peng-Zhang, U. Kortshagen, IEEE Trans. Plasma Sci. 33, 318 (2005)
[43] Shi, J.J., Liu, D.W., Kong, M.J., Appl. Phys. Lett. 89, 081502 (2006)
[44] Brandenburg, R., Maiorov, V.A., Golubovskii, Yu.B., Wagner, H.-E., Behnke, J., Behnke, J.F., J. Phys. D: Appl. Phys. 38, 2187 (2005)
[45] Bogaerts, A., de Bleecker, K., Georgieva, V., Kolev, I., Madani, M., Neyts, E., Plasma Process. Polym. 3, 110 (2006)
[46] Bartnikas, R., Radu, I., Wertheimer, M.R., IEEE Trans. Plasma Sci. 35, 1437 (2007)
[47] Yokoyama, T., Kogoma, M., Kanazawa, S., Moriwaki, T., Okazaki, S., J. Phys. D: Appl. Phys. 23, 374 (1990)
[48] Sawada, Y., Ogawa, S., Kogoma, M., J. Phys. D: Appl. Phys. 28, 1661 (1995)
[49] Schmidt-Szalowski, K., Fabianowski, W., Rzanek-Boroch, Z., Sentek, J., J. Chem. Vap. Deposition 6, 183 (1998)
[50] Prat, R., Koh, Y.J., Babukutty, Y., Kogoma, M., Okazaki, S., Kodama, M., Polymer 41, 7355 (2000)
[51] Goossens, O., Dekempeneer, E., Vangeneugden, D., Van de Leest, R., Leys, C., Surf. Coat. Technol. 142–144, 474 (2001)
[52] Sonnenfeld, A., Tun, T.M., Zaj, L. $\imath $ ckova, K.V. Kozlov, H.-E. Wagner, J.F. Behnke, R. Hippler, Plasmas Polym. 6, 4 (2001)
[53] Wagner, H.-E., Brandenburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., Behnke, J.F., Vaccuum 71, 417 (2003)
[54] Foest, R., Adler, F., Sigeneger, F., Schmidt, M., Surf. Coat. Technol. 163-164, 323 (2003)
[55] Ward, L.J., Schofield, W.C.E., Badyal, J.P.S., Goodwin, A.J., Merlin, P.J., Chem. Mater. 15, 1466 (2003)
[56] Trunec, D., Navratil, Z., Stahel, P., Zajickova, L., Bursikova, V., Cech, J., J. Phys. D: Appl. Phys. 37, 2112 (2004)
[57] Alexandrov, S.E., Hitchman, M.L., Chem. Vap. Deposition 11, 457 (2005)
[58] Fanelli, F., Fracassi, F., d'Agostino, R., Plasma Process. Polym. 2, 688 (2005)
[59] Njatawidjaja, E., Kodoma, M., Matsuzaki, K., Yasuda, K., Matsuda, T., Plasma Process. Polym. 3, 338 (2006)
[60] Laroussi, M., IEEE Trans. Plasma Sci. 24, 1188 (1996)
[61] Akitsu, T., Ohkawa, H., Tsuji, M., Kimura, H., Kogoma, M., Surf. Coat. Technol. 193, 29 (2005)
[62] Boudam, M.K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., Massines, F., J. Phys. D: Appl. Phys. 39, 3494 (2006)
[63] Boudam, M.K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., Massines, F., J. Phys. D: Appl. Phys. 39, 3494 (2006)
[64] Ohkawa, H., Akitsu, T., Tsuji, M., Kimura, H., Kogoma, M., Fukushima, K., Surf. Coat. Technol. 200, 5829 (2006)
[65] Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., Fridman, A., Plasma Process. Polym. 5, 503 (2008), doi: 10.1002/ppap.200700154
[66] Pons, J., Moreau, E., Touchard, G., J. Phys. D: Appl. Phys. 38, 3635 (2005)
[67] A. Seraudie, E. Aubert, N. Naudé, J.-P. Cambronne, in Proc. 3rd AIAA Flow Control Conf., San Francisco, USA, 2006, Paper 2006-3350
[68] Boeuf, J.P., Lagmich, Y., Unfer, T., Callegari, T., Pitchford, L.C., J. Phys. D: Appl. Phys. 40, 652 (2007)
[69] N. Gherardi, E. Croquesel, F. Massines, in Proc. 16th Int Symp. Plasma Chem. (ISPC 16), Taormina, Italy, 2003, p. 797
[70] Massines, F., Gherardi, N., Naudé, N., Ségur, P., Plasma Phys. Control. Fusion 47, B577 (2005)
[71] N. Naudé, S. Okazaki, N. Gherardi, F. Massines, in Proc. 18th Int. Symp. Plasma Chem. (ISPC 18), Kyoto, Japan, 2007
[72] Yu. P. Raizer, in Gas Discharge Physics (Springer-Verlag, Berlin, 1991)
[73] J. Tepper, M. Lindmayer, J. Salge, in Proc. Hakone VI, Cork, Ireland, 1998, pp. 123–127
[74] J. Tepper, P. Li, M. Lindmayer, in Proc. XIV Int. Conf. on Gas Discharges and their Appl., Liverpool, 2002, pp. 1–4
[75] Wang, X., Luo, H., Liang, Z., Mao, T., Ma, R., Plasma Sources Sci. Technol. 15, 845 (2006)
[76] N. Naudé, F. Massines, IEEE Trans. Plasma Sci., doi: 10.1109/TPS.2008.923899 (2008)
[77] P. Decomps, F. Massines, Ch. Mayoux, in Proc. 23rd Int. Conf. on Phenomena in Ionized Gases (XXIII ICPIG), Toulouse, France, 1997, pp.106–107
[78] N. Naudé, N. Gherardi, Et. Es-Sebbar, J.P. Cambronne, F. Massines, in Proc. 9th Int. Symp. on High Pressure Low Temp. Plasma Chem. (Hakone IX), Padova, Italy, 2004
[79] Shin, J., Raja, L.L., J. Phys. D: Appl. Phys. 40, 3145 (2007)
[80] Kai Wu, L.A. Dissado, IEEE Trans. Dielectr. Electr. Insul. 12, 655 (2005)
[81] R. Ben Gadri, Ph.D. thesis, University of Toulouse, 1997
[82] Dilecce, G., Ambrico, P.F., De Benedictis, S., Plasma Sources Sci. Technol. 16, 511 (2007)
[83] Gherardi, N., Gouda, G., Gat, E., Ricard, A., Massines, F., Plasma Sources Sci. Technol. 9, 340 (2000)
[84] Golubovskii, Y.B., Maiorov, V.A., Behnke, J., Behnke, J.F., J. Phys. D: Appl. Phys. 35, 751 (2002)
[85] C. Khamphan, P. Ségur, F. Massines, M.C. Bordage, N. Gherardi, Y. Cesses, in Proc. 16th Int. Symp. on Plasma Chem., Taormina, Italy, 2003
[86] P.F. Little, Encyclopedia of physics, Electron Emission gas discharges I, Vol. XXI, edited by S. Flugge (1956)
[87] Bosan, D.A., Jovanovic, T.V., Krmpotic, D.M., J. Phys. D: Appl. Phys. 30, 3096 (1997)
[88] N. Gherardi, N. Naudé, Et. Es-Sebbar, I. Enache, H. Caquineau, F. Massines, inProc. 10th Int. Symp. on High Pressure Low Temp. Plasma Chem. (Hakone X), Saga, Japan, 2006, pp. 21–24
[89] P. Ségur, F. Massines, in Proc. 12th Int. Conf. on Gas Discharges and their Appl. (GD 2000), Glasgow, Scotland, 2000, p. 15
[90] E. Croquesel, N. Gherardi, S. Martin, F. Massines, in Proc. 8th Int. Symp. on High Pressure Low Temp. Plasma Chem. (Hakone VII), Greifswald, Germany, 2000, pp. 88–92

Keywords

Related content

Powered by UNSILO

Recent advances in the understanding of homogeneous dielectric barrier discharges

  • F. Massines (a1), N. Gherardi (a2) (a3), N. Naudé (a2) (a3) and P. Ségur (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.