Skip to main content Accessibility help
×
Home

Rapid crystallization of amorphous silicon utilizing a VHF plasma annealing at atmospheric pressure

  • H. Shirai (a1), Y. Sakurai (a1), M. Yeo (a1), T. Kobayashi (a2) and T. Ishikawa (a3)...

Abstract

The rapid crystallization of amorphous silicon utilizing a very-high-frequency (VHF) inductive coupling thermal microplasma jet of argon is demonstrated. Highly crystallized Si films were synthesized by adjusting the translational velocity of the substrate stage and flow rate of argon. The H concentration in the crystallized Si films decreased from 1021 cm−3 to 1019 cm−3 with no marked increases in oxygen and nitrogen impurity concentrations and defect density. The thin-film transistors of a 40-nm-thick crystallized a-Si film showed a field-effect mobility of 30–55 cm2/V s with a threshold voltage of 3–5 V. P-i-n thin-film solar cells were also fabricated for 1.5-μm-thick crystallized a-Si films, which showed an efficiency of 5.5% and filled factor of 0.52. The crystallization proceeded with time constants of $\sim $ 10 ms, which was of 4–6 orders of magnitude lower than the conventional laser-crystallization of a-Si. The crystallization process is discussed in terms of the viscous flow of Si-network, due to the rapid local heating and melting of a-Si.

Copyright

Corresponding author

References

Hide All
[1] Armiento, C.A., Prince, F.C., Appl. Phys. Lett. 48, 1623 (1986)
[2] Sameshima, T., Hara, M., Usui, S., Jpn J. Appl. Phys. 28, 789 (1989)
[3] Yoon, S.Y., Park, S.J., Kim, K.H., Jang, J., Thin Solid Films 383, 34 (2001)
[4] Howell, R.S., Stewart, M., Sambit, S.V., Saha, S.K., Hatalis, M.K., IEEE Electr. Device L. 21, 70 (2000)
[5] Lee, J.W., Shimizu, K., Hanna, J., J. Non-Cryst. Solids 338–340, 173 (2004)
[6] Matsuda, A., J. Non-Cryst. Solids 338–340, 1 (2004)
[7] Andoh, N., Sameshima, T., Solid State Phenom. 93, 179 (2003)
[8] Higashi, S., Kaku, H., Murakami, H., Miyazaki, S., Watanabe, H., Ando, N., Sameshima, T., Jpn J. Appl. Phys. 44, L108 (2005)
[9] Sakurai, Y., Kobayashi, T., Hasegawa, Y., Shirai, H., Jpn J. Appl. Phys. 44, L749 (2005)
[10] Sakurai, Y., Ryo, M., Kobayashi, T., Shirai, H., J. Non-Cryst. Solids 352, 989 (2006)
[11] Launtenschlagen, P., Carriga, M., Cardona, M., Phys. Rev. B 36, 4821 (1987)
[12] Bruggeman, D.A., Ann. Phys. Leipzig 34, 636 (1935)
[13] Jellison Jr, G.E., Opt. Mater. 1, 41 (1992)
[14] Jellison Jr, G.E., Modine, F.A., Appl. Phys. Lett. 69, 2137 (1996)
[15] Hatano, M., Lee, M.H., Moon, S.J., Suzuki, K., Grigoropoulos, C.P., J. Appl. Phys. 87, 36 (2000)
[16] Choi, H.S., Jang, K.H., Min, B.H., Han, M.K., Jang, J., J. Non-Cryst. Solids 198–200, 945 (1996)
[17] Stiffler, S.R., Thomson, M.O., Peercy, P.S., Phys. Rev. B 43, 9851 (1999)
[18] Asada, T., Sakamoto, K., Watanabe, T., Sameshima, T., Higashi, S., Jpn J. Appl. Phys. 39, 3883 (2000)
[19] Tsunoda, Y., Sameshima, T., Higashi, S., Jpn J. Appl. Phys. 39, 1656 (2000)
[20] Turnbull, D., Contemp. Phys. 10, 473 (1969)
[21] J.W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, NewYork, 1975), p. 540
[22] Lam, L.K., Chen, S., Ast, D.G., Appl. Phys. Lett. 74, 1866 (1999)
[23] Licoppe, C., Nissim, Y.Y., J. Non-Cryst. Solids 11, 242 (1972)
[24] Kim, H., Couillard, J.G., Ast, D.G., Appl. Phys. Lett. 72, 803 (1998)
[25] Kingi, R., Wang, Y., Fonash, S.J., Awadelkarin, O., Mehlhaff, J., Hovagimian, H., Mater. Res. Soc. Symp. Proc. 424, 921 (1993)

Keywords

Related content

Powered by UNSILO

Rapid crystallization of amorphous silicon utilizing a VHF plasma annealing at atmospheric pressure

  • H. Shirai (a1), Y. Sakurai (a1), M. Yeo (a1), T. Kobayashi (a2) and T. Ishikawa (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.