Skip to main content Accessibility help
×
Home

Photogenerated charge carrier recombination processes in CdS/P3OT solar cells: effect of structural and optoelectronic properties of CdS films

  • H. Cortina (a1), E. Pineda (a1), J. Campos (a1), M.E. Nicho (a2) and H. Hu (a1)...

Abstract

Research and development activities in organic solar cells have been intensified in the last two decades, and the reported energy conversion efficiency in small cell samples is rapidly increased. However, the relation between cell performance and material preparation conditions is not fully understood. In this work charge carrier recombination processes in hybrid poly-3-octylthiophene (P3OT)/cadmium sulfide (CdS) photovoltaic cells were analyzed as a function of structural and optoelectronic properties of chemical bath deposited CdS thin films. The temperature of the bath solution varied between 60 and 80 °C, and the deposition time from 1 to 3 h. Charge carrier recombination times in CdS films were measured with photoconductance decay technique, whereas the same time in P3OT films was estimated by Time-of-Flight method. Charge carrier recombination rates at CdS/P3OT interface were determined by transient photovoltage technique. It is found that CdS films grown at lower solution temperature (60 °C) give a higher charge carrier recombination rate at CdS/P3OT interface and larger short-circuit current density and energy conversion efficiency values in the corresponding solar cells, in comparison with the 80 °C deposited ones. This improvement could come from the reduction of charge carrier trap density inside grains as well as at grain boundaries in lower temperature deposited CdS films.

Copyright

Corresponding author

ae-mail: hzh@cie.unam.mx

References

Hide All
[1]Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.-Q., Dante, M., Heeger, A.J., Science 317, 222 (2007)
[2]Chen, H.-Y., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y., Li, G., Nat. Photon. 3, 649 (2009)
[3]Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W., McGehee, M.D., Mater. Today 10, 28 (2007)
[4]Lee, S.B., Yoshino, K., Park, J.Y., Park, Y.W., Phys. Rev. B 61, 2151 (2000)
[5]Shuttle, C.G., O’Regan, B., Ballantyne, A.M., Nelson, J., Bradley, D.D.C., Durrant, J.R., Phys. Rev. B 78, 113201 (2008)
[6]Yang, F., Shtein, M., Forrest, S.R., Nanomaterials 4, 37 (2005)
[7]Granström, M., Petritsch, K., Arias, A.C., Lux, A., Andersson, M.R., Friend, R.H., Nature 395, 257 (1998)
[8]Kekuda, D., Huang, J.-H., Ho, K.-C., Chu, C.-W., J. Phys. Chem. C 114, 2764 (2010)
[9]Gϋnes, S., Sariciftci, N.S., Inorg. Chim. Acta 361, 581 (2008)
[10]Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., Science 295, 2425 (2002)
[11]Liao, H.-C., Chen, S.-Y., Liu, D.-M., Macromolecules 42, 6558 (2009)
[12]Ravirajan, P., Haque, S.A., Durrant, J.R., Bradley, D.D.C., Nelson, J., Adv. Funct. Mater. 15, 609 (2005)
[13]Liu, Y., Summers, M.A., Edder, C., Fréchet, J.M.J., McGehee, M.D., Adv. Mater. 17, 2960 (2005)
[14]Gowrishankar, V., Scully, S.R., McGehee, M.D., Appl. Phys. Lett. 89, 252102 (2006)
[15]Itoh, E., Takamizawa, Y., Miyairi, K., Jpn. J. Appl. Phys. 47, 509 (2008)
[16]Salinas, O.H., López-Mata, C., Hu, H., Nicho, M.E., Sol. Energy Mater. Sol. Cells 90, 2421 (2006)
[17]Hu, H., Kung, S.-C., Yang, L.-M., Nicho, M.E., Penner, R.M., Sol. Energy Mater. Sol. Cells 93, 51 (2009)
[18]Arenas, M.C., Mendoza, N., Cortina, H., Nicho, M.E., Hu, H., Sol. Energy Mater. Sol. Cells 94, 29 (2010)
[19]Li, G., Shrotriya, V., Yao, Y., Yang, Y., J. Appl. Phys. 98, 043704 (2005)
[20]Kim, Y., Choulis, S.A., Nelson, J., Bradley, D.D.C., Cook, S., Durrant, J.R., Appl. Phys. Lett. 86, 063502 (2005)
[21]Mihailetchi, V.D., Xie, H., de Boer, B., Popescu, L.M., Hummelen, J.C., Blom, P.W.M., Koster, L.J.A., Appl. Phys. Lett. 89, 012107 (2006)
[22]Li, G., Yao, Y., Yan, H., Shrotriya, V., Yang, G., Yang, Y., Adv. Funct. Mater. 17, 1636 (2007)
[23]Sharma, G.D., Suresh, P., Sharma, S.S., Vijay, Y.K., Mikroyannidis, J.A., Appl. Mater. Interfaces 2, 504 (2010)
[24]Nair, P.K., Nair, M.T.S., Arenas, O.L., Peña, Y., Castillo, A., Ayala, I.T., Gomez-Daza, O., Sánchez, A., Campos, J., Hu, H., Súarez, R., Rincón, M., Sol. Energy Mater. Sol. Cells 52, 313 (1998)
[25]Nicho, M.E., Hu, H., López-Mata, C., Escalante, J., Sol. Energy Mater. Sol. Cells 82, 105 (2004)
[26]López-Mata, C., Nicho, M.E., Hu, H., Cadenas-Pliego, G., García-Hernández, E., Thin Solid Films 490, 189 (2005)
[27]Schroder, D.K., Semiconductor Material and Device Characterization (John Wiley & Sons, New York, 1998)
[28]Liu, C.-Y., Chen, S.-A., Macromolecular Rapid Commun. 28, 1743 (2007)
[29]O’Regan, B.C., Lenzmann, F., J. Phys. Chem. B 108, 4342 (2004)
[30]Nelson, J., The Physics of Solar Cells (Imperial College Press, London, 2003)
[31]Ahrenkiel, R.K., Levi, D.H., Johnston, S., Song, W., Mao, D., Fischer, A., NREL/CP-530-22950UC Category: 1250, 1997
[32]Soci, C., Huang, I.-W., Moses, D., Zhu, Z., Waller, D., Guadiana, R., Brabec, C.J., Heeger, A.J., Adv. Funct. Mater. 17, 632 (2007)
[33]Goh, C., Scully, S.R., McGehee, M.D., J. Appl. Phys. 101, 114503 (2007)
[34]Shuttle, C.G., O’Regan, B., Ballantyne, A.M., Nelson, J., Bradley, D.D.C., de Mello, J., Durrant, J.R., Appl. Phys. Lett. 92, 093311 (2008)

Related content

Powered by UNSILO

Photogenerated charge carrier recombination processes in CdS/P3OT solar cells: effect of structural and optoelectronic properties of CdS films

  • H. Cortina (a1), E. Pineda (a1), J. Campos (a1), M.E. Nicho (a2) and H. Hu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.