Skip to main content Accessibility help
×
Home

Oxidative methane conversion in dielectric barrier discharge *

  • Krzysztof Krawczyk (a1), Michał Młotek (a1), Bogdan Ulejczyk (a1), Krzysztof Pryciak (a1) and Krzysztof Schmidt-Szałowski (a1)...

Abstract

A dielectric barrier discharge was used for the oxidative coupling of methane (OCM) with oxygen at the pressure of 1.2 bar. A dielectric barrier discharge (DBD) reactor was powered at the frequency of about 6 kHz. Molar ratio CH4/O2 in the inlet gas containing 50% or 25% of argon was 3, 6 and 12. The effects of temperature (110, 150 and 340 ◦C), gas flow rate, molar ratio of methane to oxygen on the overall methane and oxygen conversion and methane conversion to methanol, ethanol, hydrocarbons, carbon oxides and water were studied. In the studied system the increase of the temperature decreases the conversion of methane to methanol. The increase of the molar ratio of methane to oxygen increased the methane conversion to hydrocarbons and strongly decreased the methane conversion to alcohols. The conversion of methane to hydrocarbons increased and the conversion of methane to methanol decreased with the decrease of the gas flow rate from 2 to 1 NL/h.

Copyright

Corresponding author

Footnotes

Hide All
*

Contribution to the Topical Issue “13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)”, Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

Footnotes

References

Hide All
[1]Holmen, A., Catal. Today 142, 2 (2009)
[2]Górska, A., Krawczyk, K., Jodzis, S., Schmidt-Szałowski, K., Fuel 90, 1946 (2011)
[3]Sentek, J., Krawczyk, K., Młotek, M., Kalczewska, M., Kroker, T., Kolb, T., Schenk, A., Gericke, K.-H., Schmidt-Szałowski, K., Appl. Catal. B: Environ. 94, 19 (2010)
[4]Skutil, K., Taniewski, M., Fuel Process. Technol. 88, 877 (2007)
[5]Papa, F., Gingasu, D., Patron, L., Miyazaki, A., Balist, I., Appl. Catal. A: Gen. 375, 172 (2010)
[6]Havran, V., Duduković, M.P., Lo, C.S., Ind. Eng. Chem. Res. 50, 7089 (2011)
[7]Zhou, L.M., Xue, B., Kogelschatz, U., Eliasson, B., Plasma Chem. Plasma Process. 18, 375 (1998)
[8]Chen, L., Zhang, X.W., Huang, L., Lei, L.C., Chem. Eng. Process. 48, 1333 (2009)
[9]Nair, S.A., Nozaki, T., Okazaki, K., Chem. Eng. J. 132, 85 (2007)
[10]Matin, N.S., Savadkoohi, H.A., Feizabadi, S.Y., Plasma Chem. Plasma Process. 28, 189 (2008)
[11]Wang, B., Zhang, X., Liu, Y., Xu, G., J. Nat. Gas Chem. 18, 94 (2009)
[12]Lu, J., Li, Z., J. Nat. Gas Chem. 19, 375 (2010)
[13]Eliasson, B., Liu, C.-J., Kogelschatz, U., Ind. Eng. Chem. Res. 39, 1221 (2000)
[14]Yang, Y., Plasma Chem. Plasma Process. 23, 327 (2003)

Related content

Powered by UNSILO

Oxidative methane conversion in dielectric barrier discharge *

  • Krzysztof Krawczyk (a1), Michał Młotek (a1), Bogdan Ulejczyk (a1), Krzysztof Pryciak (a1) and Krzysztof Schmidt-Szałowski (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.