Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:27:14.851Z Has data issue: false hasContentIssue false

Optical absorption of Zn(V,Al)O thin films studied by spectroscopic ellipsometry from 1 to 6 eV

Published online by Cambridge University Press:  13 June 2013

Amor Sayari*
Affiliation:
Department of Physics, Faculty of Science, King Abdulaziz University, North Jeddah Branch, P.O. Box 80203, 21589 Jeddah, Saudi Arabia Equipe de Spectroscopie Raman, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, El-Manar, 2092 Tunis, Tunisie
Lassaad El Mir
Affiliation:
Department of Physics and Chemistry, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623 Riyadh, Saudi Arabia Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes University, Gabes, Tunisia
Saleh Al-Heniti
Affiliation:
Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
Talal Al-Harbi
Affiliation:
Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
Saud Jamil Yaghmour
Affiliation:
Department of Physics, Faculty of Science, King Abdulaziz University, North Jeddah Branch, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
Ahmad Abdullah Al-Ghamdi
Affiliation:
Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
Get access

Abstract

Aerogel nanoparticles prepared with various Al concentrations were used as a target for the deposition of (V,Al) co-doped ZnO films by rf-magnetron sputtering on glass substrates. The influence of Al content on the structural and the optical properties of the Zn(V,Al)O films was investigated by X-ray diffraction and spectroscopic ellipsometry (SE). It is found that all films exhibit one high intensity (0 0 2) peak, indicating that they have c-axis preferred orientation due to self-texturing mechanism. SE measurements, used to determine the complex pseudo dielectric functions, were carried out at room temperature in the 1–6 eV photon energy region. The excitonic edge of the fundamental band gap (E0) transition in the imaginary part of the dielectric function of the Zn(V,Al)O films is observed around 3.5 eV and shows a dependence on the Al content. The E0 absorption edge of the Zn0.9−x V0.1AlxO alloys shows a blueshift from that of pure ZnO, reaching 389 meV for x = 0.02. This blueshift is interpreted by the Burstein-Moss effect. By analyzing the dielectric function, reduced effective mass m* of the Zn0.9−x V0.1AlxO alloy is extracted and shows good agreement with literature values.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sernelius, B.E., Berggren, K.-F., Jin, Z.-C., Hamberg, I., Granqvist, C.G., Phys. Rev. B 37, 10244 (1988)CrossRef
Sanon, G., Rup, R., Mansingh, A., Phys. Rev. B 44, 5672 (1991)CrossRef
Jin, Z.-C., Hamberg, I., Granqvist, C.G., J. Appl. Phys. 64, 5117 (1988)CrossRef
Sarkar, A., Ghosh, S., Chaudhuri, S., Pal, A.K., Thin Solid Films 204, 255 (1991)CrossRef
Qu, Y., Gessert, T.A., Ramanathan, K., Dhere, R.G., Noufi, R., Coutts, T.J., J. Vac. Sci. Technol. A 11, 996 (1993)CrossRef
Mir, L.E., Ayadi, Z.B., Saadoun, M., von Bardeleben, H.J., Djessas, K., Zeinert, A., Phys. Stat. Sol. A 204, 3266 (2007)CrossRef
Azzam, R.M.A., Bashara, N.M., Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987)Google Scholar
Woollam, J.A., McGahan, W.A., Johs, B., Thin Solid Films 241, 44 (1994)CrossRef
Dobrowolski, J.A., Li, L., Hilfiker, J.N., Appl. Opt. 38, 4891 (1999)CrossRef
Kim, K.J., Park, Y.R., Appl. Phys. Lett. 81, 1420 (2002)CrossRef
Major, C., Nemeth, A., Radnoczi, G., Czigany, Z.S., Fried, M., Labadi, Z., Barsony, I., Appl. Surf. Sci. 255, 8907 (2009)CrossRef
Fujiwara, H., Kondo, M., Matsuda, A., J. Appl. Phys. 93, 2400 (2003)CrossRef
Mir, L.E., Ghribi, F., Hajiri, M., Ayadi, Z.B., Djessas, K., Cubukcu, M., von Bardeleben, H.J., Thin Solid Films 519, 5787 (2011)CrossRef
Mir, L.E., Ayadi, Z.B., Saadoun, M., Djessas, K., von Bardeleben, H.J., Alaya, S., Appl. Surf. Sci. 254, 570 (2007)CrossRef
Mir, L.E., Ayadi, Z.B., Rahmouni, H., Ghoul, J.E., Djessas, K., von Bardeleben, H.J., Thin Solid Films 517, 6007 (2009)CrossRef
Wang, L., Meng, L., Teixeira, V., Song, S., Xu, Z., Xu, X., Thin Solid Films 517, 3721 (2009)CrossRef
Karamat, S., Rawat, R.S., Lee, P., Tan, T.L., Ramanujan, R.V., Zhou, W., Appl. Surf. Sci. 256, 2309 (2010)CrossRef
Weller, M.T., Inorganic Materials Chemistry (Oxford University Press, Oxford, 1997)Google Scholar
Yoshikawa, H., Adachi, S., Jpn. J. Appl. Phys. 36, 6237 (1997)CrossRef
Jellison, G.E. Jr., Boatner, L.A., Phys. Rev. B 58, 3586 (1998)CrossRef
Djurisic, A.B., Chan, Y., Li, E.H., Appl. Phys. A 76, 37 (2003)
Forcht, K., Gombert, A., Joerger, R., Kohl, M., Thin Solid Films 302, 43 (1997)CrossRef
Auvergne, D., Camassel, J., Mathieu, H., Phys. Rev. B 11, 2251 (1975)CrossRef
Burstein, E., Phys. Rev. 93, 632 (1954)CrossRef
Venkatesan, M., Stamenov, P., Dorneles, L.S., Gunning, R.D., Bernoux, B., Coey, J.M.D., Appl. Phys. Lett. 90, 242508 (2007)CrossRef