Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T01:01:58.286Z Has data issue: false hasContentIssue false

On the surface effect in thin molecular or composite layers

Published online by Cambridge University Press:  15 March 2000

C. R. Simovski
Affiliation:
Physics Department, St. Petersburg State Institute for Fine Mechanics and Optics, Sablinskaya 14, 197101 St. Petersburg, Russia
S. A. Tretyakov*
Affiliation:
Electromagnetics Laboratory, Helsinki University of Technology, P.O. Box 3000, 02015 Hut, Finland
A. H. Sihvola
Affiliation:
Electromagnetics Laboratory, Helsinki University of Technology, P.O. Box 3000, 02015 Hut, Finland
M. M. Popov
Affiliation:
Department of Electromagnetic Theory, Royal Institute of Technology, Osquldas v. 6, 10044 Stockholm, Sweden
Get access

Abstract

The electromagnetic properties of thin dielectric or composite layers are considered. We study the case when the thickness d of a slab is so small that only a few particles forming the effective medium are located on the interval d. A novel approach to the quasistatic modelling of the local field acting on a particle is suggested. In this case the local "permittivity" near the upper and lower surfaces of the slab differs from the bulk permittivity of the same material. This can influence the reflection and transmission properties of the slab. Even if the particles are isotropically polarizable or are randomly oriented in the slab volume, this thin structure has anisotropic (uniaxial) electromagnetic properties.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Sihvola, Electromagnetic mixing formulas and applications (The Institute of Electrical Engineers, London, 1999).
R.E. Collin, Field Theory of Guided Waves (IEEE Press, N.Y., 1991).
Grimes, C.A., Grimes, D.M., IEEE Trans. Magn. 29, 4092 (1993). CrossRef
Mahan, G.D., Obermair, G., Phys. Rev. 183, 834 (1961). CrossRef
Sivukhin, D.V., Sov. Phys. JETP 18, 976 (1948).
R. Landauer, in Proceedings of AIP Conference, edited by J.C. Garland, D.B. Tanner (American Institute of Physics, N.Y., 1978), Vol. 40.
C. Kittel, Introduction to solid state physics, 6th edn. (John Wiley & Sons, N.Y., 1986), Chap. 13.
Vinogradov, A.P., Physica A 241, 216 (1997). CrossRef
Vinogradov, A.P., Dmitriev, Yu.N., Romanenko, V.E., Electromagnetics 17, 563 (1997). CrossRef
Munn, R.W., J. Chem. Phys. 97, 4532 (1992)
Agranovich, V.M., Solid State Commun. 78, 747 (1991). CrossRef
A.N. Lagarkov, A.P. Vinogradov, in Advances in Complex Electromagnetics Materials, edited by A. Priou et al., NATO ASI Series, 3. High Technology (Kluwer Academic Publishers, Dordrecht/Boston/London, 1997), Vol. 28.
S.A. Tretyakov, A.H. Sihvola, Electromagnetic Laboratory, Helsinki University of Technology, Report 262, January 1998, Submitted to IEEE Trans. on Antennas Propagat.
M.I. Kontorovich, M.I. Astrakhan, V.P. Akimov, G.A. Fersman, Electrodynamics of grid structures (Radio i Swiaz, Moscow, 1987) (in Russian).
McPhedran, R.C., McKenzie, D.R., Proc. Roy. Soc. London A 359, 45 (1978). CrossRef
V.V. Yatsenko, S.I. Maslovski, S.A. Tretyakov, in Progress in Electromagnetics Research, PIER25, 285 (2000).
Tretyakov, S.A., Sochava, A.A., Int. J. Infrared Millimet. Waves 15, 829 (1994). CrossRef
F.I. Fedorov, Optics of anisotropic media (Belorussian Academy of Sciences, Minsk, 1958) (in Russian).