Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:18:13.599Z Has data issue: false hasContentIssue false

On the influence of the exciton-blocking layer on the organic multilayer cells properties

Published online by Cambridge University Press:  17 May 2010

A. S. Yapi
Affiliation:
Université de Cocody, UFR SSMT 22, BP 258, Abidjan, Côte d'Ivoire
L. Toumi
Affiliation:
Université de Oran Es-Sénia, LPCM2E, Oran, Algeria
Y. Lare
Affiliation:
Université de Lomé, Laboratoire, Lomé, Togo
G. M. Soto
Affiliation:
Laboratorio de Polímeros, Facultad de Química, PUCC, Correo 22, Santiago, Chile
L. Cattin
Affiliation:
IMN-CNRS, Université de Nantes, Nantes-Atlantique Universités, 2 rue de la Houssinière, BP 92208, 44000 Nantes, France
K. Toubal
Affiliation:
Laboratorio de Polímeros, Facultad de Química, PUCC, Correo 22, Santiago, Chile
A. Djafri
Affiliation:
Laboratorio de Polímeros, Facultad de Química, PUCC, Correo 22, Santiago, Chile
M. Morsli
Affiliation:
LAMP, Université de Nantes, Nantes-Atlantique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44000 Nantes, France
A. Khelil
Affiliation:
Université de Oran Es-Sénia, LPCM2E, Oran, Algeria
M. A. Del Valle
Affiliation:
Université de Lomé, Laboratoire, Lomé, Togo
J.-C. Bernède*
Affiliation:
LAMP, Université de Nantes, Nantes-Atlantique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44000 Nantes, France
Get access

Abstract

The performances of organic photovoltaic cells based on the layer couple electron donor/electron acceptor (ED/EA) are significantly improved when an exciton blocking layer (EBL) is inserted between the organic acceptor and the cathode. A new material, the (Z)-5-(4-chlorobenzylidene)-3-(2-ethoxyphenyl)-2-thioxothiazolidin-4-one, that we called (CBBTZ), has been synthesized, characterized and probed as EBL. The energy levels corresponding to the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the CBBTZ have been determined from the first oxidation and reduction potential respectively, using cyclic voltametric (CV) measurements. From CV curves, CBBTZ in dichloromethane showed a one electron reversible reduction and oxidation waves. The values of its HOMO and LUMO have been estimated to be 6.42 eV and 3.42 eV respectively. Such values show that CBBTZ could be probed as EBL in organic solar cells based on the ED/EA couple copper phthalocyanine(CuPc)/fullerene (C60). The photovoltaic solar cells have been obtained by sequential deposition under vacuum of the different films. The different thin film thicknesses were measured in situ by a quartz monitor. Multilayer solar cells ITO/Au/CuPc/C60/EBL/Al have been probed, where EBL is the aluminium tris(8-hydroxyquinoline) (Alq3), the CBBTZ, the 2-(4-byphenylyl)-5-(4-tert-buthylphenyl)-1,3,4-oxadiazole (butyl PBD) or the bathocuproine (BCP). The optimum film thickness is 8–9 nm whatever the EBL used. When obtained in the same run, the averaged efficiency of the cells using the CBBTZ is of the same order of magnitude than that obtained with BCP and higher than that achieved with Alq3 or butyl PBD. It is shown by XPS study that some aluminium of the cathode is present in the buffer layer. This aluminium could justify the ability of the electrons to cross the insulating exciton blocking layer thick of 9 nm.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braun, S.S., Salaneck, W.R., Fahlman, M., Adv. Mater. 21, 1450 (2009) CrossRef
Huang, J., Yu, J., Lin, H., Jiang, Y., J. Appl. Phys. 105, 0773105 (2009)
Peumans, P., Bulovic, V., Forrest, S.R., Appl. Phys. Lett. 76, 2650 (2000) CrossRef
Song, Q.L., Li, F.Y., Yang, H., Wu, H.R., Ding, X.M., Huang, C.H., Hou, X.Y., Chem. Phys. Lett. 416, 42 (2005) CrossRef
Rand, B.B.P., Li, J., Xue, J., Holmes, R.J., Thompson, M.E., Forrest, S.R., Adv. Mater. 17, 2714 (2005) CrossRef
Hong, Z.R., Huang, Z.H., Zeng, X.T., Chem. Phys. Lett. 425, 62 (2006) CrossRef
Berredjem, Y., Karst, N., Boulmokh, A., Drici, A., Bernède, J.C., Eur. Phys. J. Appl. Phys. 40, 163 (2007) CrossRef
Brovelli, F., Del Valle, M.A., Díaz, F.R., Bernède, J.C., Bol. Soc. Chil. Quim. 46, 319 (2001); M.A. Del Valle, G.M. Soto, L.I. Canales, F.R. Díaz, J.C. Bernède, e-Polymers 60, 1 (2008)
East, G.A., Del Valle, M.A., J. Chem. Ed. 77, 97 (2000) CrossRef
Bernède, J.C., Berredjem, Y., Cattin, L., Morsli, M., Appl. Phys. Lett. 92, 083304 (2008) CrossRef
Bernède, J.C., Cattin, L., Morsli, M., Berredjem, Y., Sol. Energy Mater. Sol. Cells 92, 1508 (2008) CrossRef
Gordon, R.G., Mater. Res. Soc. Symp. Proc. 426, 419 (1996) CrossRef
Kasmi, S., Djafri, A., Hamelin, J., Paquin, L., Bazureau, J.P., Rahmouni, M., Synt. Commun. 37, 4017 (2007) CrossRef
Salzman, F., Xue, J., Rand, B.P., Alexander, A., Thompson, M.E., Forrest, S.R., Org. Electr. 6, 242 (2005) CrossRef
Choe, Y., Park, S.Y., Park, D.W., Kim, W., Macromol. Res. 14, 38 (2006) CrossRef
Latef, A., Bernède, J.C., Phys. Stat. Sol. (a) 124, 243 (1991) CrossRef
de Leeuw, D.M., Simenon, M.M.J., Brown, A.R., Einerhand, R.E.F., Synth. Met. 87, 53 (1997) CrossRef
Brousse, B., Ratier, B., Moliton, A., Synth. Met. 147, 293 (2004) CrossRef
Kim, J., Weiner, J.J., Zukic, M., Torr, D.G., J. Vac. Sci. Technol. A 12, 3062 (1994) CrossRef