Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T23:07:08.367Z Has data issue: false hasContentIssue false

New approach of both junction and back surface recombination velocities in a 3D modelling study of a polycrystalline silicon solar cell

Published online by Cambridge University Press:  04 June 2008

H. L. Diallo
Affiliation:
Laboratoire des Semiconducteurs et d'Énergie solaire, Département de Physique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, BP 15 003 Dakar Fann, Senegal
A. Seïdou Maiga
Affiliation:
Laboratoire des Semiconducteurs et d'Énergie solaire, Département de Physique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, BP 15 003 Dakar Fann, Senegal Section de Physique Appliquée, UFR de Sciences Appliquées et de Technologie, Université Gaston Berger, BP 234 Saint-Louis, Senegal
A. Wereme
Affiliation:
Centre National pour la Recherche Scientifique et Technique (CNRST), Ouagadougou, Burkina Faso
G. Sissoko*
Affiliation:
Laboratoire des Semiconducteurs et d'Énergie solaire, Département de Physique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, BP 15 003 Dakar Fann, Senegal
Get access

Abstract

A 3D modelling is used to obtain the expression of excess minority carrier density in base region of a polycrystalline silicon solar cell. The concept of the junction recombination velocity Sf is used to quantify how excess carrier flow through the junction in actual operating conditions. The plot of the photocurrent density allowed study the influence of the grain boundary recombination velocity and grain size on both, the junction recombination velocity and on the back surface recombination velocity of an n+-p-p+ solar cell. This study pointed out the importance of the losses at the back side of solar cell. It's also show that the junction recombination velocity is more important for small grain size with large values of grain boundary recombination velocity.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhao, J., Wang, A., Altematt, P., Green, M.A., Progress in Photovoltaic. 7, 47 (1999) 3.0.CO;2-7>CrossRef
P.P. Altermatt, J.O. Schumacher, A. Cuevas, S.W. Glunz, R.R. King, G. Heiser, A. Schenk, Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow/UK (2000), pp. 102–105
Dugas, J., Solar Energy Materials and Solar Cells 32, 1 (1994) CrossRef
H.S. Rauschenbach, Solar Cell Array Design Handbook. The Principles and Technology of Photovoltaic Energy Conversion (Van Nostrand Reinhold Ltd., New York, 1980)
El Ghitani, H., Martinuzzi, S., J. Appl. Phys. 66, 4 (1989)
Furlan, J., Amon, S., Solid State Electron. 28, 12 (1985) CrossRef
G. Sissoko, E. Nanema, A. Correa, M. Adj, A.L. Ndiaye, M.N. Diarra, Proceedings of World Renewable Energy Conference, Florence–Italy (1998), pp. 1856–1859
Ba, B., Kane, M., Fickou, A., Sissoko, G., Solar Energy Materials and Solar Cells 31, 1 (1995)
G. Sissoko, E. Nanema, A. Correa, P.M. Biteye, M. Adj, A.L. Ndiaye, Proceedings of the World Renewable Energy Conference Florence–Italy (1998), pp. 1848–1851
A. Rohatgi, S. Narasimha, D.S. Ruby, Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (Stephens, Bedford, 1998), pp. 1566–1569
F.I. Barro, I. Zerbo, O.H. Lemrabott, F. Zougmore, G. Sissoko, Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany (2001), pp. 368–371
G.Sissoko, C. Museruka, A. Corréa, I. Gaye, A.L. Ndiaye, Proceedings of the 4 th World Renewable Energy Congress, Denver, Colorado (1996), pp. 1487–1490
S.M. Sze, Physics of semiconductor Devices, 2nd edn. (Wiley Interscience, New York, 1981)