Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T21:44:53.214Z Has data issue: false hasContentIssue false

Modeling of current-voltage characteristics of metal/ultra-thin oxide/semiconductor structures

Published online by Cambridge University Press:  15 March 2000

Y. Khlifi
Affiliation:
Laboratoire d'Électronique Appliquée et d'Automatique (LEAA), Université Mohamed Ier, Faculté des Sciences, Dépt. de Physique, Oujda, Morocco Laboratoire de Physique du Solide (LPS), Université Mohamed Ier, Faculté des Sciences, Dépt. de Physique, Oujda, Morocco
K. Kassmi*
Affiliation:
Laboratoire d'Électronique Appliquée et d'Automatique (LEAA), Université Mohamed Ier, Faculté des Sciences, Dépt. de Physique, Oujda, Morocco
L. Roubi
Affiliation:
Laboratoire de Physique du Solide (LPS), Université Mohamed Ier, Faculté des Sciences, Dépt. de Physique, Oujda, Morocco
R. Maimouni
Affiliation:
Laboratoire d'Électronique Appliquée et d'Automatique (LEAA), Université Mohamed Ier, Faculté des Sciences, Dépt. de Physique, Oujda, Morocco
Get access

Abstract

In this paper we present the results of modeling concerning current-voltage (V < 0) characteristics of metal/ultra-thin oxide/semiconductor structures, where the oxide thickness varies from 45 Åto 80 Å. We analyze the theoretical influence of the temperature and Schottky effect, on the Fowler-Nordheim (FN) conduction. The results obtained show that these influences depend on the electric field in the oxide and the potential barrier at the metal/oxide interface. At the ambient temperature, the influence on this potential barrier is lower than 1.5% . However, it can reach 45% on the pre-exponential coefficient (K1). It is therefore necessary to consider in the FN classical conduction expression a correction term that takes account of the temperature and Schottky effects. These results are validated experimentally by modeling at high field, the current-voltage characteristics of the realized structures. At low field, we have determined the excess current [3], which is due to defects localized in the oxide layer, according to the structure area and the oxide thickness. By modeling this excess current, we show that it is of FN type, and deduct that the effective defect barrier depends little on the structure area and the oxide thickness. By taking into account the effective barrier value and the corrective factors due to the temperature and Schottky effect, we determine the defect effective area and show that it is related to the breakdown field of the structures: when the defect effective area increases, the breakdown field decreases.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Concannon, S. Keeney, A. Mathewson, R. Bez, C. Lombardi, IEEE Trans. Electron Devices, 40, 1258 (1993).
Fukuda, H., Hayashi, T., Uchiyama, A., Iwabuchi, T., Electron. Lett. 29, 947 (1993). CrossRef
Kassmi, K., Prom, J.L., Sarrabayrouse, G., Solid-State Electron. 34, 509 (1991). CrossRef
K. Kassmi, Thèse de l'Université Paul Sabatier, Toulouse, n $^\circ$ 904, 1991.
Scott, R.S., Dumin, D.J., J. Electrochem. Soc. 142, 586 (1995). CrossRef
Fowler, R.H., Nordheim, L., Proc. Roy. Soc. London 119, 173 (1928). CrossRef
Lenzlinger, M., Snow, E.H., J. Appl. Phys. 40, 278 (1969). CrossRef
Snow, E.H., Solid State Commun. 5, 813 (1967). CrossRef
Weinberg, Z.A., J. Appl. Phys. 53, 5052 (1982). CrossRef
J.J. O'Dwyer, The Theory of Electrical Conduction and Breakdown in Solids Dielectrics (Carendon, Oxford, 1973), p. 75.
S.M. Sze, Physics of semiconductors Devices (J. Wiley New York, 1981).
Kern, W., Puotinen, D.A., R.C.A. Rev. 31, 187 (1970).
Prom, J.L., Castagne, J., Sarrabayrouse, G., Munoz-Yague, A., IEE Proc. Part I 135, 20 (1988).
J.L. Prom, K. Kassmi, G. Sarrabayrouse, J.M.S.M. 89, Oujda (Maroc).
G. Sarrabayrouse, F. Campabadal, Rapport Laboratoire d'analyse et d'architecture des systèmes LAAS, N $^\circ$ 89010 Toulouse, France, 1990.
K. Kassmi, F. Gessin, G. Sarrabayrouse, Rapport LAAS N $^\circ$ 90058, Toulouse, 1990.
C. Chang, Ph.D. thesis, Berkeley, 1984.
Y. Khlifi, K. Kassmi, L. Roubi, R. Maimouni, MCEA'98, Marrakech (Maroc), 17-19 September 1998.
Sarrabayrouse, G., Prom, J.L., Kassmi, K., IEE Proc. 137, 475 (1990).
Harari, E., Appl. Phys. Lett. 30, 601 (1977). CrossRef
Harari, E., J. Appl. Phys. 49, 2478 (1978). CrossRef
Petersson, G.P., Svensson, C.M., Maserjian, J., Solid-State Electron. 18, 449 (1975). CrossRef
Prom, J.L., Morfouli, P., Kassmi, K., Pananakakis, G., Sarrabayrouse, G., IEE Proc. 138, 321 (1991).