Skip to main content Accessibility help

Microwave conductivity measurements of high conductive polyaniline films

  • H. Rmili (a1) (a2), J.-L. Miane (a1), H. Zangar (a2) and T. E. Olinga (a3)


This paper presents several techniques for determining the complex conductivity of highly electrically conducting polymer films at microwave frequencies. The advantages and disadvantages of these techniques are discussed. Microwave measurements were investigated using resonant cavity, reflection/transmission and impedance surface techniques. The dc conductivity was measured using the four wires technique. Polyaniline (Pani/DEHEPSA) films of 120  $\mu $ m thickness, have conductivity of (5000-6000 S/m) and permittivity of $6000 \pm 1000$ over X and S bands. The high values of the measured conductivity and its weak dependence on frequency at least up to 12 GHz, confirm the metallic character of Pani-films and their efficient use in micro-electronic technology such as microwave integrated circuits (MMIC) and microwave devices.


Corresponding author


Hide All
[1] Angelopoulos, M., Shaw, J.M., Kaplan, R.D., Perreault, S., J. Vac. Sci. Technol. B 7, 1519 (1989)
[2] Microelectronics Packaging, edited by R.R. Tummala, E.J. Rymaszewski (Van Nostrand Reinhold, New York, 1989), and references therein
[3] Clarke, T.C., Krounbi, M.T., Lee, V.Y., Steet, G.B., J. Chem. Soc. Commun. 8, 384 (1981)
[4] Gregory, R.V., Kimbrell, W.C., Kuhn, H.H., Synthetic Met. 28, 823 (1989)
[5] Berry, D.W., J. Electrochem. Soc. 132, 1022 (1985)
[6] Mäkelä, T., Pienimaa, S., Taka, T., Jussila, S., Isotalo, H., Synthetic Met. 85, 823 (1997)
[7] Angelopoulos, M., Ray, A., MacDiarmid, A.G., Epstein, A.J., Synthetic Met. 21, 21 (1987)
[8] A.G. MacDiarmid, J.C. Chiang, A.F. Richter, N.L.D. Somasiri, A.J. Epstein, in Conducting polymers, edited by L. Alcacer (Reidel, Dordrecht, 1985), pp. 105–120
[9] Biju Kumar, S., Hohn, H., Joseph, R., Hajian, M., Ligthart, L.P., Mathew, K.T., J. Eur. Ceram. Soc. 21, 2677 (2001)
[10] John, H., Biju Kumar, S., Mathew, K.T., Josph, R., J. Appl. Polym. Sci. 83, 2008 (2002)
[11] M. Sucher, J. Fox, Handbook of Microwave Measurement (New York Polytechnic, 1963), Vol. 2
[12] Olmi, R., Bini, M., Ignesti, A., Riminesi, C., Meas. Sci. Technol. 11, 1623 (2000)
[13] Ligthart, L.P., IEEE Trans. Microwave Theory Tech. MTT 31, 249 (1983)
[14] Pitt, K., Free, C., Tian, Z., J. Mater. Sci. Mater. Electron. 10, 519 (1999)
[15] Ceremuga-Mazierska, J., Supercond. Sci. Technol. 5, 391 (1992)
[16] Jih-Hsin Liu, Yi- Chia Lin, J.-T. Lue, Chien-Jang Wu, Meas. Sci. Technol. 13, 1132 (2002)
[17] Sheng, P., Philos. Mag. 65, 357 (1992)
[18] Zuppiroli, L., Bussac, M.N., Paschen, S., Chauvet, O., Forro, L., Phys. Rev. B 50, 5196 (1994)
[19] Ulanski, J., Kryszewski, M., Polish J. Chem. 69, 651 (1995)
[20] Olinga, T.E., Fraysse, J., Travers, J.P., Dufresne, A., Pron, A., Macromolecules 33, 2107 (2000)
[21] Waltron, R.A., Perturbation theory of resonant cavities, Proc. IEEE 107C, 272 (1960)
[22] Linhart, J.G., Templeton, I.M., Dunomiur, R., British J. Appl. Phys. 7, 36 (1956)
[23] Stuchly, M.A., Stuchly, S.S., IEEE Trans. Instrum. Meas. 29, 176 (1980)
[24] Marsland, T.P., Evans, S., IEEE Proc. 134, 341 (1975)
[25] A.A. Abrikosov, Fundamental of the Theory of Metals (North-Holland, Amsterdam, 1988), Chap. 7
[26] Coleman, L.B., Rev. Sci. Instrum. 46, 1125 (1975)


Microwave conductivity measurements of high conductive polyaniline films

  • H. Rmili (a1) (a2), J.-L. Miane (a1), H. Zangar (a2) and T. E. Olinga (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed