Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T23:38:11.365Z Has data issue: false hasContentIssue false

Measurement of secondary ionization coefficient of CaO film electrode *

Published online by Cambridge University Press:  15 February 2013

Susumu Suzuki*
Affiliation:
Department of Electrical, Electronic and Computer Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
Yasuhide Kashiwagi
Affiliation:
Department of Electrical and Electronic Engineering, Kisarazu National College of Technology, Kiyomidaihigashi, Kisarazu, Chiba 292-0041, Japan
Haruo Itoh
Affiliation:
Department of Electrical, Electronic and Computer Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
Get access

Abstract

The secondary ionization coefficient γ of a CaO film electrode is investigated taking into account the difference in breakdown voltage obtained by repeated voltage applications. Such measurement is performed under a sinusoidal voltage of 0.5 Hz. If the CaO film electrode acts as the cathode, breakdown voltage gradually decreases and converges to an almost constant value after several breakdowns. From the obtained results, the γ of the CaO film electrode is determined for each breakdown using Townsend’s criterion. The γ in the first breakdown is lower than those in subsequent breakdowns, particularly in the steady state. The difference in γ is considered to originate from accumulated charges on the CaO film electrode.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)”, Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

References

Becker, K.H., Kogelschatz, U., Schoenbach, K.H., Barker, R.J.(Eds.), Non-Equilibrium Air Plasmas at Atmospheric Pressure (Institute of Physics Publishing, Bristol, UK, 2005)Google Scholar
Weber, L.F., in Proc. of 11th Int. Display Workshops, IDW’04, PDP1–1, Niigata, Japan, 2004Google Scholar
Boeuf, J.P., J. Phys. D: Appl. Phys. 36, R53 (2003)CrossRef
Akashi, H., Oda, A., Sakai, Y., IEEE Trans. Plasma Sci. 36, 1336 (2008)CrossRef
Shinoda, T., Uchiike, H., Andoh, S., IEEE Trans. Electron Devices 26, 1163 (1979)CrossRef
Auday, G., Ph. Guillot, J. Galy, J. Appl. Phys. 88, 4871 (2000)CrossRef
Kashiwagi, Y., Suzuki, S., Itoh, H., IEE J. Trans. FM 130, 547 (2010) (in Japanese)
Suzuki, S., Itoh, H., Jpn J. Appl. Phys. 43, 7234 (2004)CrossRef
Suzuki, S., Itoh, H., Jpn J. Appl. Phys. 46, 1129 (2007)CrossRef
Suzuki, S., Sekizawa, T., Kashiwagi, Y., Itoh, H., Jpn J. Appl. Phys. 50, 106002 (2011)CrossRef
Teranishi, K., Shimomura, N., Suzuki, S., Itoh, H., Plasma Sources Sci. Technol. 18, 045011 (2009)CrossRef
Yamamoto, K., Ikuta, N., J. Phys. Soc. Jpn 63, 2157 (1994)CrossRef
Yamamoto, K., Ikuta, N., J. Phys. Soc. Jpn 68, 1208 (1999)CrossRef
Nakamura, Y., Kurachi, M., J. Phys. D 21, 718 (1988)CrossRef
Kuffel, E., Zaengl, W.S., Kuffel, J., High Voltage Engineering: Fundamentals, 2nd edn. (Newnes, Oxford, 2000), p. 331Google Scholar
Massines, F., Gherardi, N., Naudé, N., Ségur, P., Eur. Phys. J. Appl. Phys. 47, 22805 (2009)CrossRef
Wu, K., Dissado, L.A., IEEE Trans. Dielectr. Electr. Insul. 655 (2005)
Itoh, H., Kobayashi, K., Teranishi, K., Shimomura, N., Suzuki, S., IEEE Trans. Plasma Sci. 39, 2204 (2011)CrossRef
Stollenwerk, L., Amiranashvili, Sh., Boeuf, J.-P., Purwins, H.-G., Phys. Rev. Lett. 96, 255001 (2006)CrossRef
Bogaczyk, M., Wild, R., Stollenwerk, L., Wagner, H.-E., J. Phys. D: Appl. Phys. 45, 465202 (2012)CrossRef
Stollenwerk, L., Laven, J.G., Purwins, H.-G., Phys. Rev. Lett. 98, 255001 (2007)CrossRef