Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T21:04:22.055Z Has data issue: false hasContentIssue false

Integrated cooling devices in silicon technology

Published online by Cambridge University Press:  15 May 2002

C. Perret*
Affiliation:
Laboratoire de Physique des Composants à Semiconducteurs INPG (CNRS UMR 5531) , ENSERG, 23 rue des Martyrs, BP 257, 38016 Grenoble Cedex 1, France Laboratoire d'Électrotechnique de Grenoble INPG/UJF (CNRS UMR 5529) , ENSIEG, BP 46, 38402 Saint-Martin-d'Hères Cedex, France
Y. Avenas
Affiliation:
Laboratoire d'Électrotechnique de Grenoble INPG/UJF (CNRS UMR 5529) , ENSIEG, BP 46, 38402 Saint-Martin-d'Hères Cedex, France
Ch. Gillot
Affiliation:
CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
J. Boussey
Affiliation:
Laboratoire de Physique des Composants à Semiconducteurs INPG (CNRS UMR 5531) , ENSERG, 23 rue des Martyrs, BP 257, 38016 Grenoble Cedex 1, France
Ch. Schaeffer
Affiliation:
Laboratoire d'Électrotechnique de Grenoble INPG/UJF (CNRS UMR 5529) , ENSIEG, BP 46, 38402 Saint-Martin-d'Hères Cedex, France CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
Get access

Abstract

Silicon technology has become a good alternative to copper for the elaboration of efficient cooling devices required in power electronics domain. Owing to its high degree of miniaturization, it is expected to provide suitable microchannels and other inlets holes that were not achievable by copper micromachining. Besides, the use of silicon technology provides a variety of bare materials (silicon dioxide, silicon nitride, silicide, etc.) which may be either insulator or conductive, with a good or bad thermal conductivity. This large choice makes it possible to built up rather complex multilayer devices with mechanical properties good enough in comparison with hybrid copper technology heat sinks. Nevertheless, the use of silicon technology, where the microchannel width may reach few tens of microns, raises fundamental features concerning the fluid displacement within such small sections. More precisely, fundamental fluid mechanics studies have to be conducted out in order to get an accurate description of the fluid boundary layers and to provide basic data on the exchange mechanisms occurring at these surfaces. In this paper, we review the operation principles of both single- and double-phase heat exchange devices elaborated in silicon technology. Forced-convection heat sinks as well as integrated micro heat pipes are analyzed. An analytical approach is adopted to evaluate their total thermal resistances as a function of several geometrical parameters. Numerical simulations are then used in order to assess the accuracy of the analytical approach and to evaluate the impact of the fluidic aspects on the whole performance. The optimum devices are then conceived thanks to an appropriate optimization procedure taken into account the several experimental constraints. Reference values of similar copper devices are reminded and the advantages of the silicon integrated approach are highlighted.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.B. Tuckerman, R.F.W. Pease, IEEE Electron. Devices Lett. EDL-2, 126 (1981).
C. Furlong, RJ. Pryputniewicz, Computational and experimental approach to thermal management in microelectronics and packaging, Proceedings 2000 Int. Symp. Microelectron. (SPIE Vol. 4339). IMAPS - Int. Microelectron. & Packaging Soc, Reston, VA, USA, 2000, pp. 874-879.
Meysenc, L., Saludjian, L., Bricard, A. Rael, S., Schaeffer, C., IEEE Trans. Comp. Pack. and Manuf. Technol. - Part A 20, 334 (1997). CrossRef
C. Gillot, L. Meysenc, C. Schaeffer, A. Bricard, Integrated Single and Two-phase Micro Heat Sinks Under IGBT Chips, IEEE - IAS'97 Proc., New Orleans, 1997, pp. 994-999.
S. Rael, Conception of microexchanger for power electronic components cooling systems, INPG thesis dissertation, 1997.
Hahn, R., Wolf, J., Glaw, V., Töpper, M., Schmidt, M., Sens. and Actuators A59, 119 (1997).
Wurtz, F., Bigeon, J., IEEE Trans. Magn. 32, 1429 (1996). CrossRef
Shin'ichiro Mutoh, Low-voltage CMOS circuit Technology as a standard in the 21st Century, 1999 Int. Conf. Solid State Devices and Materials, Tokyo, September, pp. 440-441.
D. Guisiti, G. Verzellesi, G.U. Pignatel, Thermo-mechanical analysis of microstructures for chemoresistives gas sensors, 5th International Workshop Thermal Investigation of Ics and Systems, Italy, Rome, Proceeding, pp. 366-370.
M. Töpper, J. Wolf, V. Glaw, K. Buschisk, O. Ehrmann, L. Dietrich, A. Dabek, H. Reichel, MCM-D with embedded active and passive componenets, ISHM-96, October 8-10, 1996.
R.L. Dietz, D. Peck, P.J. Robinson, Enhancing thermal conductivity in organic adhesives, Adhesives in Electronics'96, June 3-5, 1996, Stokholm, pp. 47-54.
C.P. Tso, S.P. Mahulikar, A survey on coupled transport mechanisms in thin liquid films for microchannel heat transfert applicatiosn, 5th Therminic Workshop Proceeding, Rome, October 3-6, 1999, pp. 56-62.
M.N. Sabry, Sacle effects on fluid flow and heat transfert in microchannels, 5th Therminic Workshop Proceeding, Rome, October 3-6,1999, pp. 193-199.
A. Bejean, Convection Heat Transfer (Wiley, NewYork, 1984), pp. 75-82.
C.H. Mastrenagelo, Semiconductors sensors technology, Semiconductor Sensors, edited by S.M. Sze (J. Wiley Editions, 1994), p. 42.
W.M. Rohsenow, J.P. Hartnett, E.N. Ganic, Handbook of heat transfer fundamentals (McGraw-Hill, 1985).
Lasky, J.B., Appl. Phys. Lett. 48, 78 (1986). CrossRef
C. Lindher, T. Schan, N. De Rooij, Deep dry etching techniques as a new Ic compatible tool for silicon micromachining, International Conference Solid-State Sensors Actuators, Transducer'91, p. 329.
Perret, C., Boussey, J., Schaeffer, C., Coyaud, M., IEEE Trans. Components and Packaging Technol. 23, 665 (2000).
Steinkirshner, J., Martini, T., Reiche, M., Kastner, G., Gösele, U., Adv. Mater. 7, 663 (1995).
Peterson, G.P., Duncan, A.B., Weichold, M.H., J. Heat Transfer 115, 751 (1993). CrossRef
Mallik, A.K., Peterson, G.P., Weichold, M.H., J. Micromech. Syst. 4, 119 (1995). CrossRef
Hopkins, R., Faghri, A., Khrustalev, D., J. Heat Transfer 121, 102 (1999). CrossRef
Cao, Y., Gao, M., Beam, J.E., Donovan, B., J. Thermophys. Heat Transfer 11, 158 (1997). CrossRef
M.A. Zampino, W. Kinzy Jones, Substrate Embedded Heat Pipes Compatible With Ceramic Cofire Processing, Int. Symp. Microelectronics, 1997, pp. 307-313.
Khrustalev, D., Faghri, A., J. Heat Transfer 117, 1048 (1995). CrossRef
S.W. Chi, Heat Pipe Theory and Practice (McGraw-Hill, 1976).