Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T10:59:06.760Z Has data issue: false hasContentIssue false

Influence of thermofixation on artificial ACL ligament dimensional and mechanical properties

Published online by Cambridge University Press:  13 December 2005

S. Ben Abdessalem*
Affiliation:
Textile Research Unit, Institut Supérieur des Études Technologiques de Ksar Hellal, Tunisia
H. Jedda
Affiliation:
Textile Research Unit, Institut Supérieur des Études Technologiques de Ksar Hellal, Tunisia
S. Skhiri
Affiliation:
École Nationale des Ingénieurs de Monastir, Tunisia
S. Karray
Affiliation:
Institut National Mohammed Kassab d'Orthopédie, La Mannouba, Tunisia
J. Dahmen
Affiliation:
Hopital Universitaire Sahloul, Sousse, Tunisia
H. Boughamoura
Affiliation:
Hopital Universitaire Sahloul, Sousse, Tunisia
Get access

Abstract

The anterior cruciate ligament (ACL) is the major articular ligamentous structure of the knee, it functions as a joint stabilizer. When ruptured, the natural ACL ligament can be replaced by a textile synthetic ligament such as a braid, knitted cord, or woven cord. Theses structures are composed of biocompatible materials such as polyester or Gore-Tex filaments. The success of an ACL replacement is widely linked to its mechanical and dimensional properties such as tensile strength, dimensional stability and resistance to abrasion. We introduced an additional treatment in the manufacturing of textile ACL ligaments based on the thermofixation of the textile structure by using textile industry stabilization techniques. Boiling water, saturated vapor and dry heat have been tested to stabilize a braided ligament made of Dacron polyester. The application of these three techniques led to shrinkage and an increase of breaking strength of the textile structure.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cooper, J., Lu, H., Ko, F., Freeman, J., Laurencin, J., Biomaterials 26, 1523 (2005) CrossRef
E. Kieffer, Le Remplacement Artériel : Principes et Applications (A.E.R.C.V. Editions, Paris, 1992), pp. 3–51
Ben Abdessalem, S., Durand, B., Akesbi, S., Chakfé, N., Lemagnen, J.F., Beaufigeau, M., Geny, B., Riepe, G., Kretz, J.G., Euro. J. Vasc. Endovasc. 18, 1 (1999)
Rajendran, S., Anand, S., J. Text. I. 32, 1 (2002)
Teinture et Finissage des Fibres de Polyster (BASF Editions, Germany, 1990), pp. 138–141
L'H. Yahia, Ligaments and Ligamentoplasties (Springer Verlag Editions, 1996), pp. 1–51
Drouin, G., Masson, M., L'H. Yahia, Biomed. Mater. Eng. 1, 159 (1991)
Ligastic Biomechanical Properties, Technical report of Orthomed S.A., France, 2005
Dieval, F., Mathieu, D., Durand, B., Text. Res. J. 3, 1 (2003)