Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T05:26:23.923Z Has data issue: false hasContentIssue false

Influence of annealing temperature of ZnO layer on synthesizing low dimensional GaN nanostructured materials

Published online by Cambridge University Press:  21 March 2007

H. Zhuang*
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
S. Xue
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
Get access

Abstract

As-grown ZnO thin films are annealed in O2 ambient for 15 min at the temperature of 700 °C, 800 °C, 900 °C and 1000 °C, respectively. Then the Ga2O3 thin films are deposited on ZnO/Si(111) substrates by sputtering Ga2O3 target in a JCK-500A radio frequency magnetron sputtering system. The low dimensional GaN nanostructured materials are obtained on Si substrates by ammoniating the Ga2O3/ZnO films at 950 °C for 15 min in a quartz tube. X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectrophotometer (FTIR) and photoluminescence (PL) are used to analyze the structure, morphology and optical properties of GaN nanostructured films. The results show that their properties are investigated particularly as a function of annealing temperature of ZnO layer. The mechanism is also briefly discussed.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nakamura, S., Science 281, 956 (1998) CrossRef
Brown, S.A., Reeves, R.J., Haase, C.S., Appl. Phys. Lett. 75, 3285 (1999) CrossRef
S. Nakamura, G. Fasol, The Blue Laser Diode (Springer, New York, 1997)
J. Pankove, T. Moustakas, Gallium Nitride (GaN), Semiconductors and Semimetals (Academic, San Diego, 1998), Vol. 50
Hamdani, F., Yeadon, M., Smith, D.J., Tang, H., Kim, W., Salvador, A., Botchkarev, A.E., Gibson, J.M.J., Appl. Phys. 83, 983 (1998) CrossRef
Detchprohm, T., Hiramatsu, K. et al., Appl. Phys. Lett. 61, 2688 (1992) CrossRef
Han, W.Q., Redlich, P., Ernst, F., Ruhle, M., Appl. Phys. Lett. 76, 652 (2000) CrossRef
Han, W.Q., Zett, A., Appl. Phys. Lett. 80, 303 (2002) CrossRef
Duan, X.F., Lieber, C.M., J. Am. Chem. Soc. 122, 188 (2002) CrossRef
Xue, S., Zhuang, H., Xue, C. et al., Eur. Phys. J. Appl. Phys. 37, 53 (2007) CrossRef
Shulin, Gu, Rong Zhang, Jingxi Sun, Ling Zhang, T.F. Kuech, Appl. Phys. Lett. 76, 23 (2000)
Li, Yang, Chengshan Xue, Huizhao Zhuang et al., Int. J. Mod. Phys. B 46, 1639 (2002)
Sun, Yong, Miyasato J., Tatsuro, Wigmore, Keith, J. Appl. Phys. 85, 377 (1999)
Meng, G.W., Zhang, L.D., Qin, Y., Mo, C.M., Phillipp, F., Nanostruct. Mater. 12, 1003 (1999) CrossRef
Bachari, E.M., Baud, G., Ben Amor, S. et al., Thin Solid Film 348, 165 (1999) CrossRef
Xiao Hongdi, Ma Honglei, Xue Chengshan et al., Diamond and Related Mater. 14, 1730 (2005) CrossRef
Goldberger, J., He, R., Zhang, Y.F., Lee, S.K., Yan, H.Q., Yang, P.D., Nature 422, 599 (2003) CrossRef
B.K. Ridley, Quantum Process in Semiconductors (Clarendon, Oxford, 1982), pp. 62–66
Monemar, B., Phys. Rev. B 10, 676 (1974) CrossRef
Xiaojun Mao, Zhijian, Yang, Chin. J. Semicond. 20, 639 (1999)
Sun, Y., Miyasato, T., J. Appl. Phys. 84, 6451 (1998) CrossRef
Chen, Xiaolong, Li, Jianye, Cao, Yingge, Adv. Mater. 12, 1432 (2000) 3.0.CO;2-X>CrossRef
Shi, W.S., Zheng, Y.F. et al., Chem. Phys. Lett. 345, 377 (2001) CrossRef
Peng, H.Y., Zhou, X.T., Wang, N. et al., Chem. Phys. Lett. 327, 263 (2000) CrossRef
Xue, S., Zhuang, H., Xue, C. et al., Eur. Phys. J. Appl. Phys. 36, 1 (2006) CrossRef
Shoubin Xue, Huizhao Zhuang, Chengshan Xue, Lijun Hu, J. Electron. Mater., 2006 (accepted)
Gao, H., Zhuang, H., Xue, C., Wang, S., Dong, Z., He, J., Rare Metals 24, 267 (2005)
Xue, C., Wu, Y., Zhuang, H., Tian, D., Liu, Y., Zhang, X., Ai, Y., Sun, L., Wang, F., Physica E 30, 179 (2005) CrossRef